Preferred Language
Articles
/
thcMP48BVTCNdQwC6WXf
Survey on intrusion detection system based on analysis concept drift: Status and future directions
...Show More Authors

Nowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermore, various uses in the real world, Data distributions in intrusion detection systems, for example, are non-stationary, which produce concept drift over time or non-stationary learning. The word "concept drift" is used to describe the process of changing one's mind about something in an online-supervised learning scenario, the connection between the input data and the target variable changes over time. We define adaptive learning, classify existing concept drift strategies, evaluate the most typical, distinct, and widely used approaches and algorithms, describe adaptive algorithm assessment methodology, and show a collection of examples, all of this is based on the assumption that you have a basic understanding of supervised learning. The survey examines the various aspects of concept drift in a comprehensive manner in order to think about the current fragmented "state-of-the-art". As a result, which intends to give scholars, industry analysts, and practitioners a comprehensive introduction to idea drift adaptability.

View Publication
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
Evaluation of Climate Change Indicators for Bagdad City Using Remote Sensing Technology
...Show More Authors

Climate change is a severe problem due to the continuous dynamic changes in urbanization in cities, and reaching it requires high-resolution spatial data represented by using remote sensing technology, as the data of the Space Science Network of NASA was relied on to measure the change in the climate of Baghdad city for a period of four decades 1981-2021, using the climate change equation referred to in the research and then tabulating the data in Excel. The results showed evident changes in the climatic rates, especially during the fourth time cycle; the high rates of temperature and low rates of relative humidity and precipitation indicate that the city’s climate is heading towards drought, and similarities appeared between the rates

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Tue Jan 01 2019
Journal Name
International Journal Of Machine Learning And Computing
Facial Emotion Recognition from Videos Using Deep Convolutional Neural Networks
...Show More Authors

Its well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.

View Publication Preview PDF
Scopus (44)
Crossref (32)
Scopus Crossref
Publication Date
Sun Apr 26 2020
Journal Name
Iraqi Journal Of Science
Monotone Approximation by Quadratic Neural Network of Functions in Lp Spaces for p<1
...Show More Authors

Some researchers are interested in using the flexible and applicable properties of quadratic functions as activation functions for FNNs. We study the essential approximation rate of any Lebesgue-integrable monotone function by a neural network of quadratic activation functions. The simultaneous degree of essential approximation is also studied. Both estimates are proved to be within the second order of modulus of smoothness.

View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Mon Jun 17 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Dynamic Channel Assignment Using Neural Networks
...Show More Authors

This paper presents a proposed neural network algorithm to solve the shortest path problem (SPP) for communication routing. The solution extends the traditional recurrent Hopfield architecture introducing the optimal routing for any request by choosing single and multi link path node-to-node traffic to minimize the loss. This suggested neural network algorithm implemented by using 20-nodes network example. The result shows that a clear convergence can be achieved by 95% valid convergence (about 361 optimal routes from 380-pairs). Additionally computation performance is also mentioned at the expense of slightly worse results.

View Publication Preview PDF
Publication Date
Tue Dec 26 2017
Journal Name
Al-khwarizmi Engineering Journal
Optimization of Wear Parameters in AISI 4340 Steel
...Show More Authors

Abstract

 This study investigated the optimization of wear behavior of AISI 4340 steel based on the Taguchi method under various testing conditions. In this paper, a neural network and the Taguchi design method have been implemented for minimizing the wear rate in 4340 steel. A back-propagation neural network (BPNN) was developed to predict the wear rate. In the development of a predictive model, wear parameters like sliding speed, applying load and sliding distance were considered as the input model variables of the AISI 4340 steel. An analysis of variance (ANOVA) was used to determine the significant parameter affecting the wear rate. Finally, the Taguchi approach was applied to determine

... Show More
View Publication Preview PDF
Publication Date
Tue Sep 29 2020
Journal Name
Iraqi Journal Of Science
Smart Doctor: Performance of Supervised ART-I Artificial Neural Network for Breast Cancer Diagnoses
...Show More Authors

Wisconsin Breast Cancer Dataset (WBCD) was employed to show the performance of the Adaptive Resonance Theory (ART), specifically the supervised ART-I Artificial Neural Network (ANN), to build a breast cancer diagnosis smart system. It was fed with different learning parameters and sets. The best result was achieved when the model was trained with 50% of the data and tested with the remaining 50%. Classification accuracy was compared to other artificial intelligence algorithms, which included fuzzy classifier, MLP-ANN, and SVM. We achieved the highest accuracy with such low learning/testing ratio.

View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Thu Oct 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving of the Quadratic Fractional Programming Problems by a Modified Symmetric Fuzzy Approach
...Show More Authors

The aims of the paper are to present a modified symmetric fuzzy approach to find the best workable compromise solution for quadratic fractional programming problems (QFPP) with fuzzy crisp in both the objective functions and the constraints. We introduced a modified symmetric fuzzy by proposing a procedure, that starts first by converting the quadratic fractional programming problems that exist in the objective functions to crisp numbers and then converts the linear function that exists in the constraints to crisp numbers. After that, we applied the fuzzy approach to determine the optimal solution for our quadratic fractional programming problem which is supported theoretically and practically. The computer application for the algo

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Jun 15 2021
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
The Pathological Mechanisms of Obesity-Related Glomerulopathy: A review article
...Show More Authors

The rising prevalence of obesity-related glomerulopathy (ORG) occurs in accordance with the rising prevalence of obesity worldwide. Clinically ORG is manifested by slowly progressing microalbuminuria that may develop to clinically evident proteinuria. Pathological characteristics of ORG include glomerular hypertrophy in the presence or absence of focal segmental glomerulosclerosis (FSGS). ORG can develop into clinically overt chronic renal insufficiency or even end-stage kidney disease. This article reviews the most important mechanisms for the development of ORG; that are abnormal renal hemodynamics, stimulation of renin-angiotensin-aldosterone system (RAAS), impairment of insulin sensetivity, ectopic lipid deposition, adipose tissue cy

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Baghdad Science Journal
Numerical Solution for Linear State Space Systems using Haar Wavelets Method
...Show More Authors

In this research, Haar wavelets method has been utilized to approximate a numerical solution for Linear state space systems. The solution technique is used Haar wavelet functions and Haar wavelet operational matrix with the operation to transform the state space system into a system of linear algebraic equations which can be resolved by MATLAB over an interval from 0 to . The exactness of the state variables can be enhanced by increasing the Haar wavelet resolution. The method has been applied for different examples and the simulation results have been illustrated in graphics and compared with the exact solution.

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Journal Of Economics And Administrative Sciences
تحليل الفجوة بين الواقع الفعلي و متطلبات المواصفة ISO14001: 2015 دراسة حالة في شركة مصافي الوسط / مصفى الدورة
...Show More Authors

يعد نظام الإدارة البيئية ( EMS ) على وفق المواصفة ISO 14001:2015 من الانظمة الإدارية الحديثة والمهمة في وقتنا الحالي، اذ هو أحد أدوات الأدارة البيئية بعّده مدخلاً للمعالجة أو الحد من المخاطر البيئية وآثارها، وبالخصوص الاثار الناجمة من الصناعة النفطية والتي تعد المصدر الرئيس للتلوث البيئي وهدر ونفاذ الموارد الطبيعية. تتجلى مشكلة الدراسة في ضعف عملية تشخيص والحد من مخاطر الج

... Show More
View Publication Preview PDF
Crossref