ole in all sta Oil well logging, also known as wireline logging, is a method of collecting data from the well environment to determine subterranean physical properties and reservoir parameters. Measurements are collected against depth along the well's length, and many types of wire cabling tools depend on the physical property of interest. Well probes generally has a dynamic respon to changes in rock layers and fluid composition. These probes or well logs are legal documents that record the history of a well during the drilling stages until its completion. Well probes record the physical properties of the well, which must then be interpreted in petrographic terms to obtain the characteristics of the rocks and fluids associated with the well. Many bases on which well probes are depend on obtaining information, and preventing the rocks from responding to stimuli sent by special devices, whether those stimuli are electrical, radioactive, or acoustic. In addition, there are electrically controlled mechanical bases used to measure the diameter of the well, its flow, pressure, perforation, and taking samples. Wireline refers to the technique of using the cable to deliver special equipment to the bottom of the well to repair, evaluation, or equipment recovery. A simple wireline consists of a shiny metal wire (called a slickline) that is very durable for tensile and wear operations. It is of (0.108" or 0.125") diameter. The equipment is installed at the end of the wire. Still, sometimes a braided cable is used from many small steel wires (Braided line), which makes it stronger and heavier than the first type. The information obtained from the logs is considered to assess geological areas based on porosity, permeability, hydrocarbon fluids, and shale ratio. Well logging uses logs that are much cheaper than core operations and also cheaper than the information obtained from drilling mud. This review aims to pinpoint on the most important logging processes used in oil wells, as well logs have an effective role in all stages of the oil industry.
This paper describes the development of a simple spectrophotometric determination of bismuth III with 4-(2-pyridylazo) resorcinol (PAR) in aqueous solution in the presence of cetypyridinium chloride surfactant at pH 5 which exhibits maximum absorption at 532 nm. Beer's law is obeyed over the range 5-200 µg/25 mL. i.e. 0.2-8 ppm with a molar absorptivity of 3×104 l.mol-1.cm-1 and Sandell's sensitivity index of 0.0069 µg.cm-2. The method has been applied successfully in the determination of Bi (III) in waters and veterinary preparation.
Purpose: To evaluate the effect of different surface treatments on shear bond strength between dentin and IPS e.max lithium disilicate glass-ceramic. Materials and Methods: Eighteen extracted third molars were embeded in epoxy resin. The tooth was sectioned vertically in mesiodistal direction using a low speed hard tissue microtome. The buccal and lingual surfaces of each section were ground flat using 600 grit Silicone carbide paper. Eighteen ceramic discs consisted of lithium disilicate glass-ceramic were prepared with a diameter of 4.7mm and height of 2.2mm. The discs were divided in two groups (n=10): (1) IPS e.max treated with hydrofluoric acid and Monobond Plus (MBP) and (2) IPS e.max treated with Monobond Etch &Prime (MBEP). The toot
... Show MoreThis study aims to fabricate and assess the β-tricalcium phosphate (β-TCP) bioactive ceramic coat layer on bioinert ceramic zirconia implants through the direct laser melting technique by applying a long-pulsed Nd:YAG laser of 1064 nm. Surface morphologies, adherence, and structural change in the coatings were evaluated by optical microscopy, field emission scanning electron microscope, hardness, and x-ray diffractometer. The elastic modulus (EM) of the coating was also determined using the nanoindentation test. The quality of the coating was improved when the laser power was 90 W with a decrease in the scan speed to 4 mm s−1. The chemical composition of the coat was maintained after laser processing; also, the Energy Dispersive
... Show MoreThe effect of different doping ratio (0.3, 0.5, and 0.7) with thickness in the range 300nmand annealed at different temp.(Ta=RT, 473, 573, 673) K on the electrical conductivity and hall effect measurements of AgInTe2thin film have and been investigated AgAlxIn(1-x) Te2 (AAIT) at RT, using thermal evaporation technique all the films were prepared on glass substrates from the alloy of the compound. Electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated as a function of doping. All films consist of two types of transport mechanisms for free carriers. The activation energy (Ea) decreased whereas electrical conductivity increases with increased doping. Results of Hall Effect
... Show MoreAn experiment was carried out in a field in Husayniyah sub-district of the Holy Karbala Governorate. The research included studying the impact of the plowing depth and soil moisture on some technical indicators when using the disc plow. The 80 hp New Holland tractor was used in this experiment. Two factors were studied, the first factor is the soil moisture (12- 9%), (16-13%) and (20-17%) and the second factor was the depth of tillage (10-13) cm, (15-18) cm and (20-23) cm, which represented the secondary blocks. Bulk density, percentage of slippage and drawing force were studied. The field trials was conducted according to Split blocks in a randomized complete block design in three replicate. Consequences showed (according to the conditions
... Show More