Objectives. The current study aimed to predict the combined mesiodistal crown widths of maxillary and mandibular canines and premolars from the combined mesiodistal crown widths of maxillary and mandibular incisors and first molars. Materials and Methods. This retrospective study utilized 120 dental models from Iraqi Arab young adult subjects with normal dental relationships. The mesiodistal crown widths of all teeth (except the second molars) were measured at the level of contact points using digital electronic calipers. The relation between the sum mesiodistal crown widths of the maxillary and mandibular incisors and first molars and the combined mesiodistal crown widths of the maxillary and mandibular canines and premolars was assessed using Pearson’s correlation coefficient test. Based on this relation, regression equations were developed to predict the sum widths of maxillary and mandibular canines and premolars; then, the predicted mesiodistal crown sum widths were compared with the actual one using a paired sample t-test. Results. Statistically, the predicted mesiodistal crown sum widths were nonsignificantly different from the actual ones. Conclusions. The combined mesiodistal widths of maxillary and mandibular canines and premolars can be predicted successfully from the combined mesiodistal widths of the maxillary and mandibular incisors and first molars with a high degree of accuracy reaching to more than 86%.
The aim of this paper is to estimate a nonlinear regression function of the Export of the crude oil Saudi (in Million Barrels) as a function of the number of discovered fields.
Through studying the behavior of the data we show that its behavior was not followed a linear pattern or can put it in a known form so far there was no possibility to see a general trend resulting from such exports.
We use different nonlinear estimators to estimate a regression function, Local linear estimator, Semi-parametric as well as an artificial neural network estimator (ANN).
The results proved that the (ANN) estimator is the best nonlinear estimator am
... Show MoreThe Dagum Regression Model, introduced to address limitations in traditional econometric models, provides enhanced flexibility for analyzing data characterized by heavy tails and asymmetry, which is common in income and wealth distributions. This paper develops and applies the Dagum model, demonstrating its advantages over other distributions such as the Log-Normal and Gamma distributions. The model's parameters are estimated using Maximum Likelihood Estimation (MLE) and the Method of Moments (MoM). A simulation study evaluates both methods' performance across various sample sizes, showing that MoM tends to offer more robust and precise estimates, particularly in small samples. These findings provide valuable insights into the ana
... Show MoreThe aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.
The study was aimed to evaluate the marketing efficiency of dry Onion crop in Salah al-Deen, as estimate the impact of some quality and quantity factors in the efficiency of marketing process of crop using Tobit regression model. The average marketing efficiency of the research sample was 71.3686%. The marketing margins differed according to the marketing channel followed in marketing the crop. The qualitative and quantitative variables in the model are productivity, family size, distance from the market, educational level. The estimated model revealed that a variable productivity is the most important and influential in marketing efficiency, followed by the variable of the distance between the farm and the market, then the variable
... Show MoreThe study was aimed to evaluate the marketing efficiency of dry Onion crop in Salah al-Deen, as estimate the impact of some quality and quantity factors in the efficiency of marketing process of crop using Tobit regression model. The average marketing efficiency of the research sample was 71.3686%. The marketing margins differed according to the marketing channel followed in marketing the crop. The qualitative and quantitative variables in the model are productivity, family size, distance from the market, educational level. The estimated model revealed that a variable productivity is the most important and influential in marketing efficiency, followed by the variable of the distance between the farm and the market, then the variable
... Show MoreIn this research, Artificial Neural Networks (ANNs) technique was applied in an attempt to predict the water levels and some of the water quality parameters at Tigris River in Wasit Government for five different sites. These predictions are useful in the planning, management, evaluation of the water resources in the area. Spatial data along a river system or area at different locations in a catchment area usually have missing measurements, hence an accurate prediction. model to fill these missing values is essential.
The selected sites for water quality data prediction were Sewera, Numania , Kut u/s, Kut d/s, Garaf observation sites. In these five sites models were built for prediction of the water level and water quality parameters.
A pseudo-slug flow is a type of intermittent flow characterized by short, frothy, chaotic slugs that have a structure velocity lower than the mixture velocity and are not fully formed. It is essential to accurately estimate the transition from conventional slug (SL) flow to pseudo-slug (PSL) flow, and from SL to churn (CH), by precisely predicting the pressure losses. Recent research has showed that PSL and CH flows comprise a significant portion of the conventional flow pattern maps. This is particularly true in wellbores and pipelines with highly deviated large-diameter gas-condensate wellbores and pipelines. Several theoretical and experimental works studied the behavior of PSL and CH flows; however, few models have been suggested to pre
... Show MoreAccurate prediction and optimization of morphological traits in Roselle are essential for enhancing crop productivity and adaptability to diverse environments. In the present study, a machine learning framework was developed using Random Forest and Multi-layer Perceptron algorithms to model and predict key morphological traits, branch number, growth period, boll number, and seed number per plant, based on genotype and planting date. The dataset was generated from a field experiment involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 0.80), underscoring its efficacy in capturing the nonlinear genoty
... Show MoreIn this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using