According to different types of democracy Indexes, hybrid regimes or those in the gray zone, make up the majority of regime transformations in the third wave of democracy. However, after nearly three decades, conceptual confusion about hybrid regimes persists and grows, while obstructing the accumulation of knowledge about the nature of hybrid regimes. This leads to significant political repercussions for democratization. This Paper attempts to provide a clearer view of different and overlapping concepts and classifications in this complex field, and sustain development in literature on democratic transformation. To achieve this, we followed an approach based on the classification of concepts and terms in three distinct categories, based on the different trends and successive stages in literature on hybrid regimes. This limits the conceptual stretching and intellectual bias. It also helps to extrapolate the elements of contrast and diversity to highlight the prospects for the transition to those regimes as much as possible. The Paper reached a number of results. The transition paradigm was the product of a previous stage during the strong early days of the third wave. Similarly, the subsequent facts have proven that this was not "the end of history." The hybrid regimes expressed these facts through their different patterns that were in multiple directions due to various cases and contexts. Therefore, the transition outcomes are also as accommodating towards the diversity in experiences of different democratic countries.
This paper presents a hybrid genetic algorithm (hGA) for optimizing the maximum likelihood function ln(L(phi(1),theta(1)))of the mixed model ARMA(1,1). The presented hybrid genetic algorithm (hGA) couples two processes: the canonical genetic algorithm (cGA) composed of three main steps: selection, local recombination and mutation, with the local search algorithm represent by steepest descent algorithm (sDA) which is defined by three basic parameters: frequency, probability, and number of local search iterations. The experimental design is based on simulating the cGA, hGA, and sDA algorithms with different values of model parameters, and sample size(n). The study contains comparison among these algorithms depending on MSE value. One can conc
... Show MoreThe hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show MoreThis research studies the effect of adding micro, nano and hybrid by ratio (1:1) of (Al2O3,TiO2) to epoxy resin on thermal conductivity before and after immersion in HCl acid for (14 day) with normality (0.3 N) at weight fraction (0.02, 0.04, 0.06, 0.08) and thickness (6mm). The results of thermal conductivity reveled that epoxy reinforced by (Al2O3) and mixture (TiO2+Al2O3) increases with increasing the weight fraction, but the thermal conductivity (k) a values for micro and Nano (TiO2) decrease with increasing the weight fraction of reinforced, while the immersion in acidic solution (HCl) that the (k) values after immersion more than the value in before immersion.