The article emphasizes that 3D stochastic positive linear system with delays is asymptotically stable and depends on the sum of the system matrices and at the same time independent on the values and numbers of the delays. Moreover, the asymptotic stability test of this system with delays can be abridged to the check of its corresponding 2D stochastic positive linear systems without delays. Many theorems were applied to prove that asymptotic stability for 3D stochastic positive linear systems with delays are equivalent to 2D stochastic positive linear systems without delays. The efficiency of the given methods is illustrated on some numerical examples. HIGHLIGHTS Various theorems were applied to prove the asymptotic stability of 3D stochastic positive linear system with delays. Moreover, this system can be reduced to 2D stochastic positive linear system without delays Asymptotic stability of 3D stochastic positive linear systems with delays depends on the summation of system matrices and independent on numbers and values of delays for that system The principal minors and the coefficients for characteristic polynomials of 3D stochastic linear systems were applied to demonstrate the asymptotic stability when they are all positive
Background: Cancer is a lethal disease that results from a multifactorial process. Progression into carcinogenesis and an abnormal cell proliferation can occur due to the micro and macro environment as well as genetic mutations and modifications. In this review, cancer and the microbiota – mainly bacteria that inhabit the tumour tissue – have been discussed. The positive and negative impacts of the commensal bacteria on tumours being protective or carcinogenic agents, respectively, and their strategies have also been described. Methods: Related published articles written in English language were searched from Google Scholar, PubMed, Mendeley suggestions, as well as Google search using a combination of the keywords ‘Microbiota, commens
... Show MoreIn this paper harmful phytoplankton and herbivorous zooplankton model with Hollimg type IV functional response is proposed and analyzed. The local stability analysis of the system is carried out. The global dynamics of the system is investigated with the help of the Lyapunov function. Finally, the analytical obtained results are supported with numerical simulation.
A comprehensive review focuses on 3D network-on-chip (NoC) simulators and plugins while paying attention to the 2D simulators as the baseline is presented. Discussions include the programming languages, installation configuration, platforms and operating systems for the respective simulators. In addition, the simulator’s properties and plugins for design metrics evaluations are addressed. This review is intended for the early career researchers starting in 3D NoC, offering selection guidelines on the right tools for the targeted NoC architecture, design, and requirements.
You Mohammed, you're prophet of God and I'm Gabriel)). With this heavenly call which Mohammed, the messenger of God (may God's mercies be on him), got and when he left Hiraa cave and after getting the aye ((read with your God's name)), a new period of mankind's history started. From that time, the greatest state was established. There was no public treasury and no public financial resources at that time. Abu Baker (God bless him) spent a lot of money to support the costs of the new mission. After Al-Hijra, the bases of establishing the Islamic state were available but it lacked administrative and financial organizing. Therefore the prophet was very keen to find Islamic system which ensures justice and availability of
... Show MoreBackground: The insertion torque (IT) values and implant stability quotient (ISQ) values are the measurements most used to assess primary implant stability. This study aimed to assess the relationship between ISQ values and IT. Materials and methods: This study included 24 patients with a mean (SD) age of 47.9 (13.64) years (range 25-75 years). The patients received 42 dental implants (DI), 33 in the mandible and 9 in the maxilla. The DI were installed using the motorized method with 35 Ncm torque, When DI could not be inserted to the requisite depth by the motorized method, a hand ratchet was used and the IT was recorded as ˃ 35 Ncm. Implant stability was measured utilizing Osstell® ISQ. The secondary stability was measured after 16
... Show MoreMany production companies suffers from big losses because of high production cost and low profits for several reasons, including raw materials high prices and no taxes impose on imported goods also consumer protection law deactivation and national product and customs law, so most of consumers buy imported goods because it is characterized by modern specifications and low prices.
The production company also suffers from uncertainty in the cost, volume of production, sales, and availability of raw materials and workers number because they vary according to the seasons of the year.
I had adopted in this research fuzzy linear program model with fuzzy figures
... Show MoreThis paper deals with modelling and control of Euler-Bernoulli smart beam interacting with a fluid medium. Several distributed piezo-patches (actuators and/or sensors) are bonded on the surface of the target beam. To model the vibrating beam properly, the effect of the piezo-patches and the hydrodynamic loads should be taken into account carefully. The partial differential equation PDE for the target oscillating beam is derived considering the piezo-actuators as input controls. Fluid forces are decomposed into two components: 1) hydrodynamic forces due to the beam oscillations, and 2) external (disturbance) hydrodynamic loads independent of beam motion. Then the PDE is discretized usi
The main goal of this paper is to introduce the higher derivatives multivalent harmonic function class, which is defined by the general linear operator. As a result, geometric properties such as coefficient estimation, convex combination, extreme point, distortion theorem and convolution property are obtained. Finally, we show that this class is invariant under the Bernandi-Libera-Livingston integral for harmonic functions.