Blockchain technology relies on cryptographic techniques that provide various advantages, such as trustworthiness, collaboration, organization, identification, integrity, and transparency. Meanwhile, data analytics refers to the process of utilizing techniques to analyze big data and comprehend the relationships between data points to draw meaningful conclusions. The field of data analytics in Blockchain is relatively new, and few studies have been conducted to examine the challenges involved in Blockchain data analytics. This article presents a systematic analysis of how data analytics affects Blockchain performance, with the aim of investigating the current state of Blockchain-based data analytics techniques in research fields and exploring how specific features of this new technology may transform traditional business methods. The primary objectives of this study are to summarize the significant Blockchain techniques used thus far, identify current challenges and barriers in this field, determine the limitations of each paper that could be used for future development, and assess the extent to which Blockchain and data analytics have been effectively used to evaluate performance objectively. Moreover, we aim to identify potential future research paths and suggest new criteria in this burgeoning discipline through our review. Index Terms— Blockchain, Distributed Database, Distributed Consensus, Data Analytics, Public Ledger.
Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreA new set of metal complexes by the general formula [M(C)2(H2O)2]Cl2 has been prepared through the interaction of the new Ligand [N1, N4-bis(4-chlorophenyl)succinamide] (C) derived from succinyl chloride with 4-Chloroaniline with the transition metal ions Mn(II), Co(II), Ni(II), Hg(II), Cu(II) and Cd(II). Compounds diagnosed by TGA, 1 H, 13CNMR and Mass spectra (for (C)), Fourier-transform infrared and Electronic spectrum, Magnetic measurement, molar conduct, (%M, %C, %H, %N). These measurements indicate that (C) is associated with the metal ion in a bi-dentate fashion by nitrogen atoms (the amide group) and the octahedral composition of these complexes is suggested. The anti-bacterial action of the compounds towards three types of bacteria
... Show MoreIn this work, γ-Al2O3NPs were successfully biosynthesized, mediated aluminum nitrate nona hydrate Al(NO3)3.9H2O, sodium hydroxide, and aqueous clove extract in alkali media. The γ-Al2O3NPs were characterized by different techniques like Fourier transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy–dispersive x-ray spectroscopy, transmission electron microscope (TEM), Energy-dispersive X-ray spectroscopy (EDX), and atomic force microscopy (AFM). The final results indicated the γ-Al2O3NPs nanoparticle size, bonds nature, element phase, crystallinity, morphology, surface image, particle analysis – threshold detection, and the topography parameter. The id
... Show MoreThe current study was designed to compare some of the vital markers in the sera of diabetic and neuropathy patients via estimating Adipsin, Fasting blood Glucose(FBG), Glycated(HbA1c) hemoglobin, Homeostasis Model Assessment Index (Homa IR ), Cholesterol, High density lipoprotein (HDL), Triglycerides (T.G), Low-density, and lipoprotein (LDL), Very Low Density Lipoprotein (VLDL), in sera of Iraqi patients with diabetes and neuropathy. A total of ninety subjects were divided into three groups: group I (30 diabetic with neuropathy males) and group II (30 diabetic males without neuropathy), and 30 healthy sujects were employed as control group. The results showed a significant decline in Adipsin levels (p>0.05) in neuropathy, T2DM g
... Show MoreBackground: Hypertension is a major global health concern that increases the risk of cardiovascular disease. Understanding the impact of age and treatment types on blood pressure control is essential for optimizing therapeutic strategies. Aim: This study aims to assess how different treatment types and patient age influence blood pressure control in hypertensive patients. Methodology: A binary logistic regression model was employed to analyze data from 48 patients diagnosed with hypertension. The study investigated the impact of two treatment regimens and patient age on the likelihood of achieving optimal blood pressure levels. The statistical significance of the findings was evaluated using chi-square tests and p-values. Results: T
... Show MoreA series of new imides compounds[1-4] were synthesized from reaction of tetrachlorophthalic anhydride or nitro phthalic anhydride or malic anhydride or Succinic anhydride with 4-amino benzene thiol under fusion conditions. Chloroacetic acid has been added after compounds [1-4] reacted with distilled H2O and Na2CO3, producing compounds [5-8]. In benzene, compounds [5-8] also interacted with the thionyl chloride to produce [9-12]. Poly (vinyl alcohol) was chemically modified by reacting PVA with compounds [9-12] and dimethyl formamide to produce compounds [13-16]. Iron oxide nanoparticles (IONPs) are mixed with modified PVA [13-16] to create nanocomposites [17-20]. Spectral and analytical data from synthesized compounds, such as 1H-NMR, FTI
... Show MoreThe successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classifi
... Show More