Preferred Language
Articles
/
tRcxGo4BVTCNdQwC2jFh
An IoT and Machine Learning-Based Predictive Maintenance System for Electrical Motors
...Show More Authors

The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient communication between the sensors, gateway devices, and the cloud server. The system was tested on an operational motors dataset, five machine learning algorithms, namely k-nearest neighbor (KNN), supported vector machine (SVM), random forest (RF), linear regression (LR), and naive bayes (NB), are used to analyze and process the collected data to predict motor failures and offer maintenance recommendations. Results demonstrate the random forest model achieves the highest accuracy in failure prediction. The solution minimizes downtime and costs through optimized maintenance schedules and decisions. It represents an Industry 4.0 approach to sustainable smart manufacturing.

Scopus Crossref
View Publication
Publication Date
Mon Jan 01 2024
Journal Name
Fifth International Conference On Applied Sciences: Icas2023
A modified Mobilenetv2 architecture for fire detection systems in open areas by deep learning
...Show More Authors

This research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.

Scopus Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Baghdad Science Journal
Improving the Durability of Streak and Thermal Insulation of Petroleum Pipes by Using Polymeric Based Paint System: Polymer Matrix Composites have several and wide applications
...Show More Authors

This research deals with increasing the hardening and insulating the petroleum pipes against the conditions and erosion of different environments. So, basic material of epoxy has been mixed with Ceramic Nano Zirconia reinforcement material 35 nm with the percentages  (0,1,2,3,4,5) %, whereas the paint basis of broken petroleum pipes was used  to paint on it, then it was cut into dimensions (2 cm. × 2 cm.) and 0.3cm high. After the paint and percentages are completed, the samples were immersed into the paint. Then, the micro-hardness was checked according to Vickers method and thermal inspection of paint, which contained (Thermal conduction, thermal flux and Thermal diffusivity), the density of the painted samples was calculate

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Fri May 15 2015
Journal Name
Journal Of Chemical, Biological And Physical Sciences
Electrical Properties of Tin Sulphide Thin Films
...Show More Authors

In this study, SnS thin films were deposited onto glass substrate by thermal evaporation technique at 300K temperature. The SnS films have been prepared with different thicknesses (100,200 &300) nm. The crystallographic analysis, film thickness, electrical conductivity, carrier concentration, and carrier mobility were characterized. Measurements showed that depending on film thickness. The D.C. conductivity increased with increase in film thickness from 3.720x10-5 (Ω.cm)-1 for 100 nm thickness to 9.442x10-4 (Ω.cm)-1 for 300 nm thicknesses, and the behavior of activation energies, hall mobility, and carrier concentration were also studied.

Publication Date
Thu Nov 02 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Electrical Characteristics of Planar Pbthalocyanine Thin Films
...Show More Authors

The   electrical     properties   of   thin   film    interdigital    metal­

phthalocyanine - metal devices have been studied with regard to purity and electrode material . Devices utilising phthalocyanines ( H2 Pc ,

NiPc and CuPc) films with Au, Ag , Cu ' In and AI electrodes have been prepared with Pc layers fabricated  from  both as - supplied  Pc powder and entrainer - subeimed  material . The results indicate that

sublimed phthalocyanine with gold electrodes offers the best material

combination with regard to linearity , reversibility and reproducibility. Measurements  of  current &nbs

... Show More
View Publication Preview PDF
Publication Date
Fri Dec 29 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Smartphone -Based Model for Human Activity Recognition
...Show More Authors

Activity recognition (AR) is a new interesting and challenging research area with many applications (e.g. healthcare, security, and event detection). Basically, activity recognition (e.g. identifying user’s physical activity) is more likely to be considered as a classification problem. In this paper, a combination of 7 classification methods is employed and experimented on accelerometer data collected via smartphones, and compared for best performance. The dataset is collected from 59 individuals who performed 6 different activities (i.e. walk, jog, sit, stand, upstairs, and downstairs). The total number of dataset instances is 5418 with 46 labeled features. The results show that the proposed method of ensemble boost-based classif

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Dec 29 2016
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Proposal for Exchange Text message Based on Image
...Show More Authors

     The messages are ancient method to exchange information between peoples. It had many ways to send it with some security.

    Encryption and steganography was oldest ways to message security, but there are still many problems in key generation, key distribution, suitable cover image and others. In this paper we present proposed algorithm to exchange security message without any encryption, or image as cover to hidden. Our proposed algorithm depends on two copies of the same collection images set (CIS), one in sender side and other in receiver side which always exchange message between them.

      To send any message text the sender converts message to ASCII c

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
University Of Plymouth
Intrinsic Control Strategies for Herpesvirus-based Vaccine Vectors
...Show More Authors

Publication Date
Tue Sep 01 2020
Journal Name
Microprocessors And Microsystems
Design considerations for a microprocessor-based Doppler radar
...Show More Authors

View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Dec 30 2017
Journal Name
International Journal Of Science And Research (ijsr)
Color-based for tree yield fruits image counting
...Show More Authors

Identifying the total number of fruits on trees has long been of interest in agricultural crop estimation work. Yield prediction of fruits in practical environment is one of the hard and significant tasks to obtain better results in crop management system to achieve more productivity with regard to moderate cost. Utilized color vision in machine vision system to identify citrus fruits, and estimated yield information of the citrus grove in-real time. Fruit recognition algorithms based on color features to estimate the number of fruit. In the current research work, some low complexity and efficient image analysis approach was proposed to count yield fruits image in the natural scene. Semi automatic segmentation and yield calculation of fruit

... Show More
View Publication
Publication Date
Wed Jun 24 2020
Journal Name
Neuroimaging - Neurobiology, Multimodal And Network Applications
Electroencephalogram Based Biomarkers for Detection of Alzheimer’s Disease
...Show More Authors

Alzheimer’s disease (AD) is an age-related progressive and neurodegenerative disorder, which is characterized by loss of memory and cognitive decline. It is the main cause of disability among older people. The rapid increase in the number of people living with AD and other forms of dementia due to the aging population represents a major challenge to health and social care systems worldwide. Degeneration of brain cells due to AD starts many years before the clinical manifestations become clear. Early diagnosis of AD will contribute to the development of effective treatments that could slow, stop, or prevent significant cognitive decline. Consequently, early diagnosis of AD may also be valuable in detecting patients with dementia who have n

... Show More
View Publication
Crossref (2)
Crossref