The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient communication between the sensors, gateway devices, and the cloud server. The system was tested on an operational motors dataset, five machine learning algorithms, namely k-nearest neighbor (KNN), supported vector machine (SVM), random forest (RF), linear regression (LR), and naive bayes (NB), are used to analyze and process the collected data to predict motor failures and offer maintenance recommendations. Results demonstrate the random forest model achieves the highest accuracy in failure prediction. The solution minimizes downtime and costs through optimized maintenance schedules and decisions. It represents an Industry 4.0 approach to sustainable smart manufacturing.
A new results for fusion reactivity and slowing-down energy distribution functions for controlled thermonuclear fusion reactions of the hydrogen isotopes are achieved to reach promising results in calculating the factors that covered the design and construction of a given fusion system or reactor. They are strongly depending upon their operating fuels, the reaction rate, which in turn, reflects the physical behavior of all other parameters characterization of the system design
It was found that there was a significant correlation between all tests of the mechanical and electrical activity of the heart (systolic force FC, stroke volume SV, end-diastolic volume, EF volume, and left ventricular volume during diastole LVDD) with the test of the oxygen-phosphating energy system (Markaria). - As safe (Margaria-Kalamen( It was found that there is a significant correlation between all tests of the mechanical and electrical activity of the heart (myocardial systolic force FC, stroke volume SV, end-diastolic volume EDV, and the percentage of heart pumpingEF blood, and left ventricular volume during diastole (LVDD) with the Lactational Oxygen Energy System Test (Wingate Test 30 Second(
Improved oral bioavailability of lipophilic substances can be achieved using self-emulsifying drug delivery systems. However, because the properties of self-emulsifying are greatly influenced by surfactant amount and type, type of oil used, droplet size, charge, cosolvents, and physiological variables, the synthesis of self-emulsifying is highly complex; consequently, only a small number of excipient self-emulsifying formulations has been developed so far for clinical use. This study reports a highly effective procedure for developing self-emulsifying formulations using a novel approach based on the hydrophilic-lipophilic difference theory. Microemulsion characteristics, such as the constituents and amounts of oil and surfactant electrolyte
... Show MoreHeuristic approaches are traditionally applied to find the optimal size and optimal location of Flexible AC Transmission Systems (FACTS) devices in power systems. Genetic Algorithm (GA) technique has been applied to solve power engineering optimization problems giving better results than classical methods. This paper shows the application of GA for optimal sizing and allocation of a Static Compensator (STATCOM) in a power system. STATCOM devices used to increase transmission systems capacity and enhance voltage stability by regulate the voltages at its terminal by controlling the amount of reactive power injected into or absorbed from the power system. IEEE 5-bus standard system is used as an example to illustrate the te
... Show MoreIn this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these measurement
... Show MoreNew microphotometer was constructed in our Laboratory Which deals with the determination of Molybdenum (VI) through its Catalysis effect on Hydrogen peroxide and potasum iodide Reaction in acid medium H2SO4 0.01 mM. Linearity of 97.3% for the range 5- 100 ppm. The repeatability of result was better than 0.8 % 0.5 ppm was obtanined as L.U. (The method applied for the determination of Molybdenum (VI) in medicinal Sample (centrum). The determination was compared well with the developed method the conventional method.
This research aims to present a proposed model for disclosure and documentation when performing the audit according to the joint audit method by using the questions and principles of the collective intelligence system, which leads to improving and enhancing the efficiency of the joint audit, and thus enhancing the confidence of the parties concerned in the outputs of the audit process. As the research problem can be formulated through the following question: “Does the proposed model for disclosure of the role of the collective intelligence system contribute to improving joint auditing?”
The proposed model is designed for the disclosure of joint auditing and the role
... Show MoreIn this work, we carried out an experimental study of thedusty
plasma by taking the dust material Fe3O4 with radius of the any grain
0.1μm - 0.5μm. In experiment we use air in the vacuum chamber
system under different low pressure (0.1-1) Torr. The results
illustrated that the present of dust particles in the air plasma did not
effect on Paschen minimum which is 0.5 without dust and with Fe3O4
dusty grains.
The effect of Fe3O4 dust particles on plasma parameters can be
notice in direct current system in glow discharge region. The plasma
parameters which were studied in this work represent plasma
potential, floating potential,electron saturation current, temperatu