Preferred Language
Articles
/
gRb10IcBVTCNdQwCo2KL
Achieving an optimum slowing-down energy distribution functions and corresponding reaction rates for the (D+3He and T+3He) fusion reactions

A new results for fusion reactivity and slowing-down energy distribution functions for controlled thermonuclear fusion reactions of the hydrogen isotopes are achieved to reach promising results in calculating the factors that covered the design and construction of a given fusion system or reactor. They are strongly depending upon their operating fuels, the reaction rate, which in turn, reflects the physical behavior of all other parameters characterization of the system design

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Apr 12 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Plasma Power Density Produced by D-T Fusion Reaction

         Calculation of the power density of the nuclear fusion reactions plays an important role in the   construction of any power plants. It is clear that the power released by fusion reaction strongly depended on the fusion cross section and fusion reactivity. Our calculation concentrates on the most useful and famous fuels (Deuterium-tritium) since it represents the principle fuels in any large scale system like the so called tokomak.

View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability: Tmrees19gr
Theoretical calculations involving a standard neutron yield distribution for the T-T nuclear fusion reaction

A standard theoretical neutron energy flux distribution is achieved for the triton-triton nuclear fusion reaction in the range of triton energy about ≤10 MeV. This distribution give raises an evidence to provide the global calculations including the characteristics fusion parameters governing the T-T fusion reaction.

Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Aip Conference Proceedings
Temperature dependence energy distribution function for proton-tritium fusion reaction

The physical behavior for the energy distribution function (EDF) of the reactant particles depending upon the gases (fuel) temperature are completely described by a physical model covering the global formulas controlling the EDF profile. Results about the energy distribution for the reactant system indicate a standard EDF, in which it’s arrive a steady state form shape and intern lead to fix the optimum selected temperature.

Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability: Tmrees19gr
Improve studies and calculations for the Bose-Einstein condensation D-D fusion reaction rate

A theoretical study including the effects of the fusion characteristics parameters on the fundamental fusion rate for the BEC state in D-D fusion reaction is deal with varieties physical parameters such as the fuels density, fuel temperature and the astrophysics S-factor are processed to bring an approximately a comparable results to agree with the others previously studies.

Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Study of A Improve Model For The D-D Nuclear Fusion Reaction Cross Section

     The study of improved model for measuring the total nuclear fusion cross section characteristics  the D-D reaction may play an important role in deciding  or determining the hot plasma parameters such as mean free path , the reaction rate , reactivity and energy for emitted neutrons or protons in our work we see the it is necessary to modify the empirical formulas included the total cross section in order to arrive or achieve good agreement with the international publish result.    

View Publication Preview PDF
Publication Date
Mon Jul 01 2019
Journal Name
Journal Of Physics: Conference Series
Fusion Power Density and Radiation Losses Characteristics for Tritium Fusion Reactions

A new data for Fusion power density has been obtained for T-3He and T-T fusion reactions, power density is a substantial term in the researches related to the fusion energy generation and ignition calculations of magnetic confined systems. In the current work, thermal nuclear reactivities, power densities of a fusion reactors and the ignition condition inquiry are achieved by using a new and accurate formula of cross section, the maximum values of fusion power density for T-3He and TT reaction are 1.1×107 W/m3 at T=700 KeV and 4.7×106 W/m3 at T=500 KeV respectively, While Zeff suggested to be 1.44 for the two reactions. Bremsstrahlung radiation has also been determined to reaching self- sustaining reactors, Bremsstrahlung values are 4.5×

... Show More
Scopus (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon May 31 2021
Journal Name
Iraqi Journal Of Science
Non-Resonant Reaction Rates of 13C(α,n)16O and 22Ne(α,n)25Mg reactions in AGB Stars

Both 13C 16O and 22Ne 25Mg reactions perform a cosmic role in the production of neutrons in AGB stars, which significantly contributes to the nucleosynthesis via the s-process. The astrophysical S-factor for both reactions is calculated in this research, utilizing EMPIRE code and depending on two parameter sets for the optical potential. These datasets were published earlier by McFadden and Satchler (denoted here as MFS) and Avrigeanu and Hodgson (denoted as AH) for the non-resonant region of the spectrum and over a temperature range of . The extrapolated S-factor at zero energy is derived to be  and  for 13C 16O, while the values were  and  fo

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
Fusion Reaction Study of some Selected Halo Systems

The challenge in studying fusion reaction when the projectile is neutron or proton rich halo nuclei is the coupling mechanism between the elastic and the breakup channel, therefore the motivation from the present calculations is to estimate the best coupling parameter to introduce the effect of coupled-channels for the calculations of the total cross section of the fusion  , the barrier distribution of the fusion   and the average angular momentum ⟨L⟩ for the systems 6He+206Pb, 8B+28Si, 11Be+209Bi, 17F+208Pb, 6He+238U, 8He+197Au and 15C+232Th using quantum mechanical approach.  A

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
Iraqi Journal Of Physics
Theoretical Calculations of the Cross-sections for (n,α) and (n,xα) reactions on the Structural Material for Fusion Reactor 46-50Ti

The biggest problem of structural materials for fusion reactor is the damage caused by the fusion product neutrons to the structural material. If this problem is overcomed, an important milestone will be left behind in fusion energy. One of the important problems of the structural material is that nuclei forming the structural material interacting with fusion neutrons are transmuted to stable or radioactive nuclei via (n, x) (x; alpha, proton, gamma etc.) reactions. In particular, the concentration of helium gas in the structural material increases through deuteron- tritium (D-T) and (n, α) reactions, and this increase significantly changes the microstructure and the properties of the structural materials. T

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
Arpn Journal Of Engineering And Applied Sciences
Achieving a theoretical approximation characterize the stopping power of heavy ion in D-T plasma

The dependence of the energy losses or the stopping power for the ion contribution in D- T hot plasma fuels upon the corresponding energies and the related penetrating factorare arrive by using by a theoretical approximation models. In this work we reach a compatible agreement between our results and the corresponding experimental results.

Scopus
View Publication Preview PDF