Ternary semiconductors AB5C8 (A = Cu/Ag, B = In and C = S, Se or Te) have been investigated. The CuIn5S8 and AgIn5S8 have been synthesize in cubic spinel structure with space group (Fd3m), whereas CuIn5Se8, AgIn5Se8, CuIn5Te8 and AgIn5Te8 have tetragonal structures with space group P-42m. The relaxed crystal geometry, electrical properties such as electronic band structure and optoelectronic properties are predicted by using full potential method in this work. For the determination of relaxed crystal geometry, the gradient approximation (PBE-GGA) is used. All the studied compounds are semiconductors based on their band structures in agreement with the experimental results, and their bulk moduli are in the range 35 to 69 GPa. Wide absorption peaks appeared in the visible to ultraviolet energy region indicating good absorption ability of these compounds. Therefore, these semiconductors are an excellent choice for optical devices, electrochemical and photovoltaic cells. These compounds have remarkable characteristics such as direct as well as indirect band gaps with very slight difference between the two, high absorption coefficient, good photo-stability, easy inter-conversion between n- and p-type semiconductors and in manufacturing of comparatively cheap homo and hetero junction structures. AB5C8 (A = Cu/Ag; B = In and C = S, Se, Te) compounds have shown high absorption and optical conductivity in the visible region. These compounds have therefore high potential to be used as solar energy harvesting. Also these systems are optical active in the ultraviolet region too therefore can be used for high frequency optoelectronics applications.
The effect of annealing on the structural and optical properties of Antimony trisulfide (Sb2S3) is investigated. Sb2S3 powder is vaporized on clean glass substrates at room temperature under high vacuum pressure to form thin films. The structural research was done with the aid of X-ray diffraction (XRD) and atomic force microscopy (AFM). The amorphous to the polycrystalline transformation of these thin films was shown by X-ray diffraction analysis after thermal annealing. These films' morphology is explained. The absorption coefficient and optical energy gap of the investigated films are calculated using transmission spectra. Both samples have strong absorption in the visible spectrum, according to UV-visible absorption spectra. The optical
... Show MoreZnS:MnP2+P nanoparticles were prepared by a simple microwave irradiation method under mild condition. The starting materials for the synthesis of ZnS:MnP 2+P quantum dots were zinc acetate as zinc source, thioacetamide as a sulfur source, manganese chloride as manganese source (R & M Chemical) and ethylene glycol as a solvent. All chemicals were analytical grade products and used without further purification. The quantum dots of ZnS:MnP 2+P with cubic structure were characterized by X-ray powder diffraction (XRD), the morphology of the film is seen by scanning electron microscopy (SEM) also by field effect scanning electron microscopy (FESEM). The composition of the samples is analysed by EDS. UV-Visible absorption spectroscopy analysis
... Show MoreIn this work, the effect of atomic ratio on structural and optical properties of SnO2/In2O3 thin films prepared by pulsed laser deposition technique under vacuum and annealed at 573K in air has been studied. Atomic ratios from 0 to 100% have been used. X-ray diffraction analysis has been utilized to study the effect of atomic ratios on the phase change using XRD analyzer and the crystalline size and the lattice strain using Williamson-Hall relationship. It has been found that the ratio of 50% has the lowest crystallite size, which corresponds to the highest strain in the lattice. The energy gap has increased as the atomic ratio of indium oxide increased.
The electronic properties and Hall effect of thin amorphous Si1-xGex:H films of thickness (350 nm) have been studied such as dc conductivity, activation energy, Hall coefficient under magnetic field (0.257 Tesla) for measuring carrier density of electrons and holes and Hall mobility as a function of germanium content (x = 0–1), deposition temperature (303-503) K and dopant concentration for Al and As in the range (0-3.5)%. The composition of the alloys and films were determined by using energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS).
This study showed that dc conductivity of a-Si1-xGex:H thin films is found to increase with increasing Ge content and dopant concentration, whereas conductivity activati
The researchers aim of this research to analyze the reality of educational services in the city of Ramadi in order to reveal the efficiency of the spatial distribution of schools at the level of residential neighborhoods and the requirements of the population, based on the standards and indicators for this service.
The research problem related to the educational function of the city of Ramadi was formulated by asking about the efficiency of the spatial distribution of educational services and whether there is a balance in the distribution of schools to residential neighborhoods in a way that meets the requirements of the population, and in order to answer the research problem, the research hypothesis was formulated that there is
... Show MoreBackground: Malignant lymphomas represent about 5% of all malignancy of the head and neck region which can involve lymph nodes as well as soft tissue and bone of the maxillofacial region. Apoptosis is considered a vital component of various processes including normal cell turnover, proper development and functioning of the immune system. Inappropriate apoptosis is a factor in many human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. Expression of p53 Proteins in Hodgkin׳s and Non Hodgkin׳s lymphomas suggested that it can help in monitoring of patients and the markers may aid in controlling the progression of lymphoma and detect the degree of aggressiveness of the diseas
... Show MoreThe enhancement of ZnSe/Si Heterojunction by adding some elements (V, In and Cu) as impurities is the main goal because they contribute to the manufacturing of renewable energy equipment, such as solar cells. This paper describes the preparation of thin films ZnSe with V, In and Cu doped using thermal evaporation method with a vacuum of 10–5 Torr. The thin film was obtained from this work could be applied in heterojunction solar cell because of several advantages including high absorption coefficient value and direct band gap. The samples prepared on a glass and n-type Si wafer substrate. These films have been annealed for 1 h in 450 K. X-ray diffraction XRD results indicated that ZnSe thin film possesses poly-crystalline structure after
... Show More