Preferred Language
Articles
/
tRaitIcBVTCNdQwCglxJ
On types of Delay in Delay Differential equation
...Show More Authors

Publication Date
Sat Mar 30 2024
Journal Name
Journal Of Kufa For Mathematics And Computer
Approximate Solution of Linear and Nonlinear Partial Differential Equations Using Picard’s Iterative Method
...Show More Authors

Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
Stability for the Systems of Ordinary Differential Equations with Caputo Fractional Order Derivatives
...Show More Authors

     Fractional calculus has paid much attention in recent years, because it plays an essential role in many fields of science and  engineering, where the study of stability theory of fractional differential equations emerges to be very important. In this paper, the stability of fractional order ordinary differential equations will be studied and introduced the backstepping method. The Lyapunov function  is easily found by this method. This method also gives a guarantee of stable solutions for the fractional order differential equations. Furthermore it gives asymptotically stable.

View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
A general solution of some linear partial differential equations via two integral transforms
...Show More Authors

In this paper, a new analytical method is introduced to find the general solution of linear partial differential equations. In this method, each Laplace transform (LT) and Sumudu transform (ST) is used independently along with canonical coordinates. The strength of this method is that it is easy to implement and does not require initial conditions.

View Publication
Clarivate
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of The College Of Basic Education
Efficient Modifications of the Adomian Decomposition Method for Thirteenth Order Ordinary Differential Equations
...Show More Authors

This paper deals with the thirteenth order differential equations linear and nonlinear in boundary value problems by using the Modified Adomian Decomposition Method (MADM), the analytical results of the equations have been obtained in terms of convergent series with easily computable components. Two numerical examples results show that this method is a promising and powerful tool for solving this problems.

View Publication
Publication Date
Thu Apr 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solution of Population Growth Rate Linear Differential Model via Two Parametric SEE Transformation
...Show More Authors

The integral transformations is a complicated function from a function space into a simple function in transformed space. Where the function being characterized easily and manipulated through integration in transformed function space. The two parametric form of SEE transformation and its basic characteristics have been demonstrated in this study. The transformed function of a few fundamental functions along with its time derivative rule is shown. It has been demonstrated how two parametric SEE transformations can be used to solve linear differential equations. This research provides a solution to population growth rate equation. One can contrast these outcomes with different Laplace type transformations

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Theoretical Studies of Sum Optical Properties for InAs (001) by Surface Differential Reflectivity
...Show More Authors

The real and imaginary part of complex dielectric constant for InAs(001) by adsorption of oxsagen atoms has been calculated, using numerical analysis method (non-linear least square fitting). As a result a mathematical model built-up and the final result show a fairly good agreement with other genuine published works.

View Publication Preview PDF
Crossref
Publication Date
Mon May 14 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Generalized Spline Approach For Solving System of Linear Fractional Volterra Integro-Differential Equations
...Show More Authors

    In this paper generalized spline method is used for solving linear system of fractional integro-differential equation approximately. The suggested method reduces the system to system of  linear algebraic equations. Different orders of fractional derivative for test example is given in this paper to show the accuracy and applicability of the presented method.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Jun 27 2020
Journal Name
Iraqi Journal Of Science
A Class of Harmonic Univalent Functions Defined by Differential Operator and the Generalization
...Show More Authors

In this paper, a new class of harmonic univalent functions was defined by the differential operator. We obtained some geometric properties, such as the coefficient estimates, convex combination, extreme points, and convolution (Hadamard product), which are required

View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sat Nov 30 2024
Journal Name
Iraqi Journal Of Science
Admissible Classes of Seven-Parameter Mittag-Leffler Operatorwith Third-Order Differential Subordination Properties
...Show More Authors

The main purpose of this paper, is to characterize new admissible classes of linear operator in terms of seven-parameter Mittag-Leffler function, and discuss sufficient conditions in order to achieve certain third-order differential subordination and superordination results. In addition, some linked sandwich theorems involving these classes had been obtained.  

View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Jan 11 2019
Journal Name
Iraqi Journal Of Physics
The pre-equilibrium and equilibrium double differential cross sections for the nucleons and light nuclei induce nuclear reactions on 27Al nuclei
...Show More Authors

The pre - equilibrium and equilibrium double differential cross
sections are calculated at different energies using Kalbach Systematic
approach in terms of Exciton model with Feshbach, Kerman and
Koonin (FKK) statistical theory. The angular distribution of nucleons
and light nuclei on 27Al target nuclei, at emission energy in the center
of mass system, are considered, using the Multistep Compound
(MSC) and Multistep Direct (MSD) reactions. The two-component
exciton model with different corrections have been implemented in
calculating the particle-hole state density towards calculating the
transition rates of the possible reactions and follow up the calculation
the differential cross-sections, that include MS

... Show More
View Publication Preview PDF
Crossref