The power generation of solar photovoltaic (PV) technology is being implemented in every nation worldwide due to its environmentally clean characteristics. Therefore, PV technology is significantly growing in the present applications and usage of PV power systems. Despite the strength of the PV arrays in power systems, the arrays remain susceptible to certain faults. An effective supply requires economic returns, the security of the equipment and humans, precise fault identification, diagnosis, and interruption tools. Meanwhile, the faults in unidentified arc lead to serious fire hazards to commercial, residential, and utility-scale PV systems. To ensure secure and dependable distribution of electricity, the detection of such hazards is crucial in the early phases of the distribution. In this paper, a detailed review of modern approaches for the identification of DC arc faults in PV is presented. In addition, a thorough comparison is performed between various DC arc-fault models, characteristics, and approaches used for the identification of the faults.
Diabetic retinopathy is an eye disease, because of pressure in eye nerve fiber. It is a major cause of blindness in middle as well as older age groups; therefore it is essential to diagnose it earlier. Some of the challenges are in the diagnosis of the disease is detection edges of the image, may be some important edges are missed outcome the noise around the corners.
Wherefore, in order to reduce these effects in this paper, we proposed a new technique for edge detection using traditional operators in combination with fuzzy logic based on fuzzy inference system. The results show that the proposed fuzzy edge detection technique better than of traditional techniques, where vascular are markedly detected over the original.
Pavement crack and pothole identification are important tasks in transportation maintenance and road safety. This study offers a novel technique for automatic asphalt pavement crack and pothole detection which is based on image processing. Different types of cracks (transverse, longitudinal, alligator-type, and potholes) can be identified with such techniques. The goal of this research is to evaluate road surface damage by extracting cracks and potholes, categorizing them from images and videos, and comparing the manual and the automated methods. The proposed method was tested on 50 images. The results obtained from image processing showed that the proposed method can detect cracks and potholes and identify their severity levels wit
... Show MoreA new approach presented in this study to determine the optimal edge detection threshold value. This approach is base on extracting small homogenous blocks from unequal mean targets. Then, from these blocks we generate small image with known edges (edges represent the lines between the contacted blocks). So, these simulated edges can be assumed as true edges .The true simulated edges, compared with the detected edges in the small generated image is done by using different thresholding values. The comparison based on computing mean square errors between the simulated edge image and the produced edge image from edge detector methods. The mean square error computed for the total edge image (Er), for edge regio
... Show MoreVoice Activity Detection (VAD) is considered as an important pre-processing step in speech processing systems such as speech enhancement, speech recognition, gender and age identification. VAD helps in reducing the time required to process speech data and to improve final system accuracy by focusing the work on the voiced part of the speech. An automatic technique for VAD using Fuzzy-Neuro technique (FN-AVAD) is presented in this paper. The aim of this work is to alleviate the problem of choosing the best threshold value in traditional VAD methods and achieves automaticity by combining fuzzy clustering and machine learning techniques. Four features are extracted from each speech segment, which are short term energy, zero-crossing rate, auto
... Show MoreHM Al-Dabbas, RA Azeez, AE Ali, Iraqi Journal of Science, 2023
The Normalization Difference Vegetation Index (NDVI), for many years, was widely used in remote sensing for the detection of vegetation land cover. This index uses red channel radiances (i.e., 0.66 μm reflectance) and near-IR channel (i.e., 0.86 μm reflectance). In the heavy chlorophyll absorption area, the red channel is located, while in the high reflectance plateau of vegetation canopies, the Near-IR channel is situated. Senses of channels (Red & Near- IR) read variance depths over vegetation canopies. In the present study, a further index for vegetation identification is proposed. The normalized difference vegetation shortwave index (NDVSI) is defined as the difference between the cubic bands of Near- IR and Shortwave infrared
... Show MoreGround penetrating radar (GPR) is one of the Remote Sensing methods that utilize electromagnetic waves in the detection of subjects below the surface to record Once the data were collected, it could be presented in map and 2D and 3D. GPR method was applied in detecting graves (Tel Alags archaeological) fact, within the administrative border to spend Rumitha can be challenging. Due to the sensitivity of these sites, the challenge is to explore the subsurface without disturbing the soil Some cemeteries are hundreds of years old. Often records are vague or incomplete and there may be serious doubt about the precise extent of a cemetery .GPR is the most practical way to sort out the site was to carry out a detailed grid survey. A Noggin 250
... Show MoreFor several applications, it is very important to have an edge detection technique matching human visual contour perception and less sensitive to noise. The edge detection algorithm describes in this paper based on the results obtained by Maximum a posteriori (MAP) and Maximum Entropy (ME) deblurring algorithms. The technique makes a trade-off between sharpening and smoothing the noisy image. One of the advantages of the described algorithm is less sensitive to noise than that given by Marr and Geuen techniques that considered to be the best edge detection algorithms in terms of matching human visual contour perception.
In our article, three iterative methods are performed to solve the nonlinear differential equations that represent the straight and radial fins affected by thermal conductivity. The iterative methods are the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM) to get the approximate solutions. For comparison purposes, the numerical solutions were further achieved by using the fourth Runge-Kutta (RK4) method, Euler method and previous analytical methods that available in the literature. Moreover, the convergence of the proposed methods was discussed and proved. In addition, the maximum error remainder values are also evaluated which indicates that the propo
... Show More