CIGS nanoink has synthesized from molecular precursors of CuCl, InCl3, GaCl3 and Se metal heat up 240 °C for a half hour in N2-atmosphere to form CIGS nanoink, and then deposited onto substrates of soda-lime glass (SLG). This work focused on CIGS nanocrystals, indicates their synthesis and applications in photovoltaic devices (PVs) as an active light absorber layers. in this work, using spin-coating to deposit CIGS layers (75 mg/ml and 500 nm thickness), without selenization at high temperatures, were obtained up to 1.398 % power conversion efficiency (PCE) at AM 1.5 solar illumination. Structural formations of CIGS chalcopyrite structure were studied by using x ray diffraction XRD. The morphology and composition of CIGS were studied using scanning electron microscopy SEM.
Environmental education is considered as process of getting Humans in communication with this environment and all its various resources. such process requires acquiring knowledge about the environment that com help humans understand their correlative relations with the environmental elements on one hand and among the environmental elements themselves on the other . Besides, such a process requires developing human skills that help them participate in developing environmental circumstances. Therefore environmental education is responsible for perspective and cultural development that governs human behavior. Regarding their environment and stimulating tendencies and interests towards the environment , let alone helping humans acquire the c
... Show MoreMost intrusion detection systems are signature based that work similar to anti-virus but they are unable to detect the zero-day attacks. The importance of the anomaly based IDS has raised because of its ability to deal with the unknown attacks. However smart attacks are appeared to compromise the detection ability of the anomaly based IDS. By considering these weak points the proposed
system is developed to overcome them. The proposed system is a development to the well-known payload anomaly detector (PAYL). By
combining two stages with the PAYL detector, it gives good detection ability and acceptable ratio of false positive. The proposed system improve the models recognition ability in the PAYL detector, for a filtered unencrypt
The main purpose of the work is to apply a new method, so-called LTAM, which couples the Tamimi and Ansari iterative method (TAM) with the Laplace transform (LT). This method involves solving a problem of non-fatal disease spread in a society that is assumed to have a fixed size during the epidemic period. We apply the method to give an approximate analytic solution to the nonlinear system of the intended model. Moreover, the absolute error resulting from the numerical solutions and the ten iterations of LTAM approximations of the epidemic model, along with the maximum error remainder, were calculated by using MATHEMATICA® 11.3 program to illustrate the effectiveness of the method.
In this paper, the concept of fully stable Banach Algebra modules relative to an ideal has been introduced. Let A be an algebra, X is called fully stable Banach A-module relative to ideal K of A, if for every submodule Y of X and for each multiplier ?:Y?X such that ?(Y)?Y+KX. Their properties and other characterizations for this concept have been studied.
Scheduling Timetables for courses in the big departments in the universities is a very hard problem and is often be solved by many previous works although results are partially optimal. This work implements the principle of an evolutionary algorithm by using genetic theories to solve the timetabling problem to get a random and full optimal timetable with the ability to generate a multi-solution timetable for each stage in the collage. The major idea is to generate course timetables automatically while discovering the area of constraints to get an optimal and flexible schedule with no redundancy through the change of a viable course timetable. The main contribution in this work is indicated by increasing the flexibility of generating opti
... Show MoreThe convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show More