Preferred Language
Articles
/
tBd82IwBVTCNdQwCRwgO
Noise Detection and Removing in Heart Sound Signals via Nuclear Norm Minimization Problems
...Show More Authors

Heart sound is an electric signal affected by some factors during the signal's recording process, which adds unwanted information to the signal. Recently, many studies have been interested in noise removal and signal recovery problems. The first step in signal processing is noise removal; many filters are used and proposed for treating this problem. Here, the Hankel matrix is implemented from a given signal and tries to clean the signal by overcoming unwanted information from the Hankel matrix. The first step is detecting unwanted information by defining a binary operator. This operator is defined under some threshold. The unwanted information replaces by zero, and the wanted information keeping in the estimated matrix. The resulting matrix contains zeros, so the problem is to find a low-rank matrix. Matrix completion is a heuristic NP-hard problem. It is a minimization problem defined by the matrix nuclear norm. In this paper, nuclear norm, and weighted nuclear norm minimization problems are derived to find a low-rank matrix of implemented Hankel matrix from the signal. A Robust Principal Component used to solve a low-rank-sparse matrix finds a low-rank Hankel matrix by solving a minimization problem numerically. The results show that the given methods are efficient in reconstructing and recovering the signals with a rate of more than 96%, with small values of mean square errors

Scopus Crossref
View Publication
Publication Date
Tue Feb 01 2022
Journal Name
Svu-international Journal Of Engineering Sciences And Applications
Water Quality Detection using cost-effective sensors based on IoT
...Show More Authors

Crossref (4)
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Neuroscience Informatics
Epileptic EEG activity detection for children using entropy-based biomarkers
...Show More Authors

View Publication
Scopus (18)
Crossref (12)
Scopus Crossref
Publication Date
Fri May 17 2019
Journal Name
Lecture Notes In Networks And Systems
Features Selection for Intrusion Detection System Based on DNA Encoding
...Show More Authors

Intrusion detection systems detect attacks inside computers and networks, where the detection of the attacks must be in fast time and high rate. Various methods proposed achieved high detection rate, this was done either by improving the algorithm or hybridizing with another algorithm. However, they are suffering from the time, especially after the improvement of the algorithm and dealing with large traffic data. On the other hand, past researches have been successfully applied to the DNA sequences detection approaches for intrusion detection system; the achieved detection rate results were very low, on other hand, the processing time was fast. Also, feature selection used to reduce the computation and complexity lead to speed up the system

... Show More
Scopus (5)
Scopus
Publication Date
Wed Apr 02 2014
Journal Name
Journal Of Theoretical And Applied Information Technology
TUMOR BRAIN DETECTION THROUGH MR IMAGES: A REVIEW OF LITERATURE
...Show More Authors

Today’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by usin

... Show More
Scopus (48)
Scopus
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Engineering
Development an Anomaly Network Intrusion Detection System Using Neural Network
...Show More Authors

Most intrusion detection systems are signature based that work similar to anti-virus but they are unable to detect the zero-day attacks. The importance of the anomaly based IDS has raised because of its ability to deal with the unknown attacks. However smart attacks are appeared to compromise the detection ability of the anomaly based IDS. By considering these weak points the proposed
system is developed to overcome them. The proposed system is a development to the well-known payload anomaly detector (PAYL). By
combining two stages with the PAYL detector, it gives good detection ability and acceptable ratio of false positive. The proposed system improve the models recognition ability in the PAYL detector, for a filtered unencrypt

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Apr 05 2025
Journal Name
2025 Ieee 4th International Conference On Computing And Machine Intelligence (icmi)
From Pixels to Diagnosis: AI-Powered CNN for Pneumonia Detection
...Show More Authors

View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Feb 28 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
Intelligent System for Parasitized Malaria Infection Detection Using Local Descriptors
...Show More Authors

Malaria is a curative disease, with therapeutics available for patients, such as drugs that can prevent future malaria infections in countries vulnerable to malaria. Though, there is no effective malaria vaccine until now, although it is an interesting research area in medicine. Local descriptors of blood smear image are exploited in this paper to solve parasitized malaria infection detection problem. Swarm intelligence is used to separate the red blood cells from the background of the blood slide image in adaptive manner. After that, the effective corner points are detected and localized using Harris corner detection method. Two types of local descriptors are generated from the local regions of the effective corners which are Gabor based f

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Theoretical And Applied Information Technology
Matching Algorithms for Intrusion Detection System based on DNA Encoding
...Show More Authors

Pattern matching algorithms are usually used as detecting process in intrusion detection system. The efficiency of these algorithms is affected by the performance of the intrusion detection system which reflects the requirement of a new investigation in this field. Four matching algorithms and a combined of two algorithms, for intrusion detection system based on new DNA encoding, are applied for evaluation of their achievements. These algorithms are Brute-force algorithm, Boyer-Moore algorithm, Horspool algorithm, Knuth-Morris-Pratt algorithm, and the combined of Boyer-Moore algorithm and Knuth–Morris– Pratt algorithm. The performance of the proposed approach is calculated based on the executed time, where these algorithms are applied o

... Show More
Scopus (5)
Scopus
Publication Date
Sat Aug 01 2015
Journal Name
2015 37th Annual International Conference Of The Ieee Engineering In Medicine And Biology Society (embc)
Tsallis entropy as a biomarker for detection of Alzheimer's disease
...Show More Authors

View Publication
Scopus (34)
Crossref (21)
Scopus Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Revue D'intelligence Artificielle
Performance Evaluation of SDN DDoS Attack Detection and Mitigation Based Random Forest and K-Nearest Neighbors Machine Learning Algorithms
...Show More Authors

Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne

... Show More
View Publication
Scopus (19)
Crossref (11)
Scopus Crossref