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Abstract—Pneumonia is a major respiratory infection and is 
one of the top causes of death among young children around the 
world. Traditional diagnostic approaches, including X-ray 
imaging, require expert analysis and are often limited by 
delayed intervention and misdiagnosis, especially in resource-
limited settings. In this study, we propose a convolutional neural 
network (CNN)-based model to facilitate the automatic 
identification of pneumonia from chest X-rays. The model was 
trained on a dataset of 5,863 pediatric X-ray images and 
achieved an accuracy of 93%, precision of 91%, recall of 96%, 
and F1-score of 94%. To optimize performance, multiple 
preprocessing steps were performed, including grayscale 
conversion, image resizing, normalizing, and data 
augmentation. Future work should focus on scaling the model 
by using larger datasets and incorporating transfer learning to 
amplify performance and generalizability even further. 
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I. INTRODUCTION 
Pneumonia is a serious respiratory condition that infects 

and inflames the lungs’ air sacs, which can fill with fluid or 
pus, resulting in coughing, fever, chills and trouble breathing. 
It is caused from a variety of pathogens, all from bacteria and 
viruses to fungi, most commonly transmitted when someone 
coughs or sneezes, as well as through direct contact with 
contaminated objects or people [1]. Pneumonia can affect 
individuals of all ages and body types, but is particularly 
dangerous for individuals below five and above sixty-five, as 
well as those with an unbalanced immune system.  

According to the World Health Organization, pneumonia 
has caused an estimated 2.5 million deaths worldwide in 2019 
alone, making it among the leading causes of infectious 
disease deaths globally [2]. This emphasizes how important 
timely and accurate diagnosis is for effective treatment and 
intervention, with the high mortality rate. Nonetheless, 
existing diagnostic methods, including visual assessment of 
chest X-ray images by radiologists, suffer from various 
drawbacks [3]. These traditional methods are not only time 
consuming but also prone to human error, variability in 
expertise and fatigue.  

Diagnostic delays are particularly common in many under 
resourced medical settings where such specialists are in short 
supply. Additionally, X-rays may be unable to detect faint 
signs of pneumonia, leading to misdiagnosis or delayed 
treatment that can be a life-threatening event [4]. The 
interpretive process is also very subjective; for example, same 
image can produce different conclusions from different 
radiologists, and more so in borderline or early stage cases. 
Moreover, traditional imaging equipment may have poor 
image quality caused by old machines or bad imaging 
conditions, which makes diagnosis inaccurate. Such 

compounded limitations point out the urgent need of a more 
objective, efficient and reliable diagnostic aid which can 
operate in consistent manner in different clinical 
environments. 

To help mitigate this problem, this study presents a deep 
learning solution that utilized a Convolutional Neural Network 
(CNN) approach for automated pneumonia screening from X-
ray images [5]. This technique harnesses CNN's strength in 
feature extraction and learning of complex patterns from 
medical images, ultimately seeking to enhance the speed, 
accuracy, and consistency of diagnostics, while providing a 
scalable and highly effective approach for the future of 
healthcare systems.  

The rest of the paper is structured as follows: Section II 
reviews related works; Section III describes the proposed 
methodology; Section IV presents results and discussion; and 
Section V summarizes the main findings and further 
directions. 

II. LITERATURE REVIEW 
As the deep learning technologies continue to grow 

rapidly, many studies have been performed to explore the use 
of convolutional neural networks (CNNs) for automated 
detection of pneumonia from chest X-rays. The aim of these 
efforts is to address the diagnostic limitations of the healthcare 
professionals, especially in the low resource setting. The 
contributions to this field which are highlighted in this section 
are in terms of model performance, dataset, and architectural 
decisions. 

In a study by Yuvraj Sinha Chowdhury et al. [6], various 
CNN models were run on a Kaggle chest X-ray dataset with 
varying numbers of iterations, CNN layers and optimizers. 
The best performing model was achieved by the one with four 
hidden layers and the SGD optimizer that was at 91% 
accuracy. It shows that network depth and optimizer choice 
can have important impact on pneumonia detection 
performance in CNN based systems. 

Another study by V. Sirish Kaushik et al. [7] used four 
CNN architectures for pediatric pneumonia detection and 
tested the models on a Kaggle dataset. The model with two 
convolutional layers had its lowest accuracy with 85.26%, and 
its highest reaching 92.31%. To prevent overfitting, dropout 
was used, and recall and F1 score were evaluated for each 
model. 

According to a study by Swapnil Singh [8], which used 
Kaggle’s chest X-ray dataset, the pneumonia detection was 
carried out with CNN and multilayer perceptron models. A 
GUI was developed to predict the pneumonia and congestion 
percentage. The CNN model outperformed the multilayer 
perceptron with 92.63% of accuracy, which was the highest 
and multilayer perceptron with 77.56% of accuracy was the 



lowest, proving that CNN is more reliable and an automated 
diagnosis. 

Moreover, Orlando et al. [9] conducted experiments on 
four pre-trained CNN models, namely VGG16, VGG19, 
ResNet50 and InceptionV3 for detecting pneumonia from 
chest X-ray images. The study had sought to detect the disease 
early in order to reduce child mortality and according to which 
InceptionV3 got the highest accuracy of 72.9%. 

Mudasir Ali et al. [10] explored a dataset of 5,856 chest X-
rays that were used to evaluate six deep learning models 
including: CNN, InceptionResNetV2, Xception, VGG16, 
ResNet50, and EfficientNetV2L. Training was done with the 
Adam optimizer models, and results showed that deep learning 
has the potential to support accurate pneumonia diagnosis with 
an accuracy of 87.78% achieved by the proposed model. 

 Testing on an expanded dataset of 5,863 chest X-rays, 
Shadi A. Aljawarneh et al. [11] trained various deep learning 
models including Enhanced CNN, VGG-19, ResNet-50. The 
Enhanced CNN applied with transfer learning and fine tuning 
techniques on it has highest accuracy of 92.4% and ResNet-50 
model achieved the least accuracy of 82.8%. 

Overall, all the studies have shown promising results of 
detecting pneumonia from X-ray images using different 
variations of a CNN model, however, majority of these papers 
have achieved accuracies of 89% and below, which is due to 
the imbalance in the dataset used by all the papers. Although 
the accuracy score is good, it can be improved by addressing 
the imbalance in the dataset. 

III. METHODOLOGY 
This section outlines the methodological framework used 

for the development and evaluation of the proposed 
pneumonia detection system. The section is structured into 
four important parts discussing the dataset utilized, the 
preprocessing utilized on the dataset, the convolutional neural 
network (CNN) architecture used,  and the metrics used to test 
the model performance. 

A. Dataset 
The dataset used for training and testing the CNN model is 

based on pediatric chest X-ray images. This dataset was 
sourced from the publicly available and widely known 
Guangzhou Women and Children’s Medical Center dataset 
found on Kaggle [12]. There are a total of 5,863 anterior–
posterior chest X-ray images from pediatric patients within the 
age range of one to five years. The two diagnostic categories 
are labeled NORMAL and PNEUMONIA; hence, supervised 
learning approaches for binary classification can be 
implemented on the dataset. A summary of the dataset is 
provided in table I. 

TABLE I.  DESCRIPTION OF THE CHEST X-RAY DATASET USED FOR 
BINARY CLASSIFICATION OF PNEUMONIA PRESENCE 

Feature Description 
Source Guangzhou Women and Children’s 

Medical Center 
Total Images 5,863 X-ray images (JPEG format) 
Age Group Pediatric patients (1-5 years old) 
Image Type Anterior–Posterior chest X-ray 

images 
Categories Normal, Pneumonia 

 
This is the same dataset used by all the papers we explored 

in the literature review section, this is done to properly analyse 
and compare our CNN model with their attempts, it is also 
done to solve the dataset imbalance hurdle previous studies 
faced. The dataset images were divided into training, testing, 

and validation sets, Fig. 1 visualizes the distribution of images 
in the training set, we can observe an imbalance where the 
number of pneumonia images are triple the number of normal 
images with 3875 pneumonia images to 1341 normal images. 

 
Fig. 1. Training set chest X-ray image distribution. 

B. Preprocessing Phase 
To prepare the is dataset for training, multiple 

preprocessing steps were applied to sure data uniformity, as 
well as help model learning and reduce the computational 
complexity. Grayscale conversion, image resizing, 
normalization and data augmentation the main milestones of 
this section. Each phase is crucial in determining how the input 
data will be shaped for the convolutional neural network and 
increasing the model’s generalization ability. 

Grayscale conversion is the first step of the preprocessing 
pipeline. As chest X-ray images do not have color channels for 
conveying important medical features, converting from RGB 
to grayscale helps reduce the number of channels from three 
to one. Moreover, it not only lowers computational cost during 
training but also removes the noise that is not important for 
discriminating pathological patterns like opacities or fluid 
accumulation related to pneumonia, allowing the model to 
concentrate on the variations based on intensity. 

All images were then converted to grayscale, and all 
images were resized to a fixed dimension of 150x150 pixels. 
The sizes of the original chest X-rays in the dataset were 
varied, which could possibly result in inconsistencies in model 
input [13]. We standardized the image size so that the 
convolutional layers can process inputs of same dimension 
and the training process goes smoothly, preventing errors 
caused by inconsistent tensor shapes. The dimension 150x150 
strikes a good compromise between keeping the key visual 
features and keeping the computational load as reasonable as 
possible. 

The pixel intensity values of the images were then 
normalized to a consistent range using normalization. It 
enhances the convergence rate of the model during training 
and avoids the gradient related issues. In particular, pixel 
values were scaled down to a [0, 1] range. By normalizing the 
data, this transformation ensures that all input data is on a 
similar scale, which can stabilize training and improve its 
efficiency. 

To enhance model robustness and prevent overfitting, data 
augmentation procedures were employed to augment the 
training images [14]. This method generates altered copies of 
images found in the dataset using pre-defined transformation 



functions, thus artificially enlarging the dataset size. Several 
augmentation techniques were used in this study, as shown in 
Fig. 2 some training images were randomly rotated up to 30 
degrees, others were zoomed in by 20% and horizontal and 
vertical shifts by 10% were used as these levels of positional 
variance.  

 
Fig. 2. Dataset changes after applying data augmentation. 

Moreover, images were randomly flipped horizontally to 
add more variance. After defining the augmentation 
configurations, the data set was fitted to an augmentation 
generator so that these augments would be applied on the fly 
as the model learnt. This led to a larger and more diverse 
training dataset, which enabled the CNN model to better 
generalize to images it had not seen before. 

C. Proposed CNN Model Architecture 
A structured and layered architecture of the proposed 

Convolutional Neural Network (CNN) model for pneumonia 
detection is followed, to extract and learn complex features 
from chest X-ray images in an efficient manner [15]. As in the 
model shown in Fig. 3, we begin with the input layer which 
accepts grayscale chest X-ray images of size 150x150 pixels. 
The network then passes through multiple convolutional 
layers, where it applies learnable filters to detect low to high 
level features like edges, textures, and shapes that are relevant 
for pneumonia diagnosis.  

After each convolutional layer, there is a max pooling 
operation performed on the feature maps, down sampling 
them, reducing spatial dimensions and computational load 
while preserving the main features [16]. Batch Normalization 
is added after the convolutional and max pooling stages to 
stabilize and speed up training and make sure that the network 
has the constant activation distributions in all layers. Dropout 
layers are introduced into the network at strategic points to 
prevent overfitting.  

The spatially structured data is flattened into a one 
dimensional vector after the convolutional and max pooling 
layers are applied to the output. The learned features are 
further interpreted by these dense layers and used to make the 
final classification. The sigmoid activation function is used on 
the final dense layer to output a binary prediction of whether 
the chest X-ray image is normal or is infected with pneumonia. 
The CNN can learn robust patterns from the radiographic 
images and robustly make reliable diagnostic predictions in 
this sequential and hierarchical model design. 

To ensure optimal performance of our CNN model, a set 
of hyperparameters were used throughout the training process. 
These hyperparameters influenced the model’s generalization 
and classification capability. Table II provides a summary of 
these hyperparameters. 

TABLE II.  CORE HYPERPARAMETERS USED TO TRAIN THE PROPOSED 
CNN MODEL 

Hyperparameter Value Rationale 
Optimizer Adam Efficient for CNNs in 

medical imaging 

Learning Rate 0.0001 Chosen through 
experimentation for 
stable convergence 

Batch Size 32 Balanced memory 
usage 

Epochs 20 To ensure 
convergence without 
overfitting 

Activation Function ReLu and Sigmoid To prevent vanishing 
and for binary output 

Kernal Size 3x3 Standard choice to 
capture local features 

 

 
Fig. 3. Proposed CNN model architecture. 

D. Evaluation Metrics 
To thoroughly assess the proposed CNN model for 

pneumonia detection, accuracy, precision, recall and F1-score 
were used as evaluation metrics [17]. The accuracy, as in 
equation (1), is the overall correctness of the model which is 
measured by the ratio of correctly predicted instances to the 
total number of predictions made by the model. Nevertheless, 
in cases of class imbalance, just accuracy may not give a 
complete picture. Therefore, precision and recall were also 
used.  

Precision, as in equation (2), is the proportion of true 
positive predictions over all positive predictions the model 
made, that is, how many of the model’s predicted pneumonia 
cases were actually correct. On the other hand, recall, as in 
equation (3), measures the model’s ability to identify all actual 
positive cases, meaning how well pneumonia cases were 
detected by the system. Finally, F1-score, as in equation (4) 
will help measure the balance between precision and recall. 
True Positive (TP), False Positive (FP), True Negative (TN) 
and False Negative (FN) are represented in equations (1) to (3) 
respectively. 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

 (1) 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (2) 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (3) 

 𝐹𝐹1 = 2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×Recall
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+Recall

 (4) 

Apart from these metrics, confusion matrix was used to 
visualize and quantify the model performance based on true 
positives, false positives, true negatives and false negatives. 
This matrix also helps in understanding the nature of errors 
made by the classifier and class specific performance [18]. In 
addition, it was plotted using Training vs Validation Curves 



and analyzed to understand how a model learned over epochs. 
In the training process, these curves reflect the changes in 
accuracy and loss for both training and validation datasets, so 
as to detect such problems as overfitting or underfitting. The 
results from this curve will identify whether our data 
augmentation has helped in addressing the dataset imbalance. 

IV. RESULTS AND DISCUSSION 
After testing the model for 20 epochs, the classification 

report gave very promising results as the overall accuracy of 
the model was 93%. The precision was also 91%, indicating a 
strong ability to correctly identify positive cases of pneumonia 
with minimal false positives. Additionally, the model had a 
recall value of 96%, showing the model’s effectiveness in 
detecting real pneumonia cases. The F1-score was 94% which 
indicated a robust and well generalized performance in 
handling both classes. Fig. 4 showcases correctly predicted 
chest X-ray images from the test-set, the first row shows 
normal cases, while the second row shows pneumonia cases. 

 
Fig. 4. Correct predictions of normal and pneumonia test cases. 

Confusion matrix provides further information on the 
model’s predictive behavior. As in Fig. 5 among all 
predictions, 33 predictions were misclassified as pneumonia 
and 201 normal cases were identified correctly. In terms of the 
pneumonia side, only 13 images were wrongly labeled as 
normal and 377 were correctly diagnosed. It is a favorable 
distribution in medical diagnosis, where missing a pneumonia 
case is more dangerous than over diagnosing. Data 
augmentation thus substantially aided in closing the dataset 
imbalance and improving the classification confidence. 

 
Fig. 5. CNN model confusion matrix. 

The training and validation accuracy curves also showcase 
the benefits of data augmentation, as Fig. 6 revealed a 
consistent gradual increase throughout the epochs, signifying 
that the model was learning effectively without overfitting. 
Moreover; during training and validation loss values, it also 
showed steady decline of the model and it was adapting well 
to the dataset and generalized well for unseen data. These 
patterns are indicative of healthy convergence and stability in 
the training process which verify the reliability of the proposed 
CNN architecture. 

 
Fig. 6. Training and validation accuracy/loss curves. 

A. Discussion 
Overall results show that the proposed CNN model is 

reliable and robust in the automated detection of pneumonia 
from chest X-ray images, as evaluated with all the metrics. The 
model performed with an accuracy of 93%, precision of 91%, 
recall of 96% and F1-score of 94%, which is a strong and 
consistent classification performance. These results are further 
supported by the confusion matrix which shows 201 correctly 
classified normal images, 377 correctly classified pneumonia 
cases, 33 false positives and only 13 false negatives.  

The significance of this low number of false negatives is 
especially important in medical diagnosis, as overlooking a 
pneumonia case can be very dangerous. The performance of 
this study is superior to that of all the reviewed models, having 
the highest classification accuracy of 93%, which is higher 
than best accuracies reported in previous literature ranging 
from 72.9% to 92.63%. It therefore places this proposed model 
as a superior solution in the domain of automated pneumonia 
detection.  

The simplicity, efficient convergence, and generalization 
through a carefully tuned architecture and comprehensive data 
augmentation strategies make the model’s advantage. 
Nevertheless, there are still limits, for instance, dependency on 
labeled datasets and the difficulty of generalizing to a variety 
of imaging conditions or patient demographics which are not 
present in the dataset. This can be addressed by extending to 
multi-class classification of other thoracic diseases to further 
extend its clinical utility.  

The results generally validate the model’s ability to be 
deployed in real time in medical settings to facilitate faster and 
more accurate pneumonia diagnosis. Table III presents a 
comparative analysis between the literature work and our 
CNN model. 

 



TABLE III.  COMPARATIVE ANALYSIS OF PNEUMONIA DETECTION 
ACROSS PAST STUDIES 

# Author Model Used Results (%) 
[6] Yuvraj Sinha CNN with 1-5 

hidden layers 
91% (Best 
Layer) 

[7] Sirish Kaushik 
 

Two CNN Layers 85.26% and 
92.31% 

[8] Swapnil Singh CNN 92.63% 
[9] Orlando VGG16, VGG19, 

ResNest50, 
InceptionV3 

72.9% (Best 
Model) 

[10] Mudasir Ali CNN, Xception, 
VGG16, ResNet50 

87.78% (Best 
Model) 

[11] Shadi A. 
Aljawarneh 

CNN, VGG19, 
ResNet50 

92.5% 
(Enhanced 
CNN) 

Proposed CNN Model Custom Built 
CNN Model 

93% 

V. CONCLUSION AND FUTURE DIRECTIONS 
This study successfully demonstrates the effectiveness of 

Convolutional Neural Network (CNN)-based models in 
detecting pneumonia from chest X-ray images with high 
accuracy and reliability. The proposed model was applied to a 
pediatric dataset of 5,863 images and achieved 93% accuracy, 
91% precision, 96% recall and 94% F1-score. The model is 
shown to be robust in identifying positive and negative cases 
correctly using these metrics. 

Combinations of preprocessing steps including grayscale 
conversion, normalization and resizing as well as data 
augmentation techniques were critical in solving the problem 
of class imbalance as well as generalization. Additionally, the 
evaluation results showed that the model was compatible with 
unseen data and was not prone to the use of diagnostic errors 
for clinical applicability.  

Several further improvements can be pursued to increase 
the impact of this work looking ahead. A promising approach 
is to broaden the current binary classification to a multi-class 
model capable of detecting other pulmonary conditions such 
as tuberculosis (TB) or COVID-19, thereby enabling it to 
serve as a useful tool in the diagnostic process. Moreover, 
exploring transfer learning may lead to higher accuracy scores. 

Such improvements would allow the model to be more 
versatile and scalable across many different healthcare 
settings. In conclusion, the expansion of a larger and more 
diverse dataset and more sophisticated learning architectures 
can make this work grow into a complete diagnostic support 
system for the particular medical decisions made around the 
world faster and more accurate. 
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