Heart sound is an electric signal affected by some factors during the signal's recording process, which adds unwanted information to the signal. Recently, many studies have been interested in noise removal and signal recovery problems. The first step in signal processing is noise removal; many filters are used and proposed for treating this problem. Here, the Hankel matrix is implemented from a given signal and tries to clean the signal by overcoming unwanted information from the Hankel matrix. The first step is detecting unwanted information by defining a binary operator. This operator is defined under some threshold. The unwanted information replaces by zero, and the wanted information keeping in the estimated matrix. The resulting matrix contains zeros, so the problem is to find a low-rank matrix. Matrix completion is a heuristic NP-hard problem. It is a minimization problem defined by the matrix nuclear norm. In this paper, nuclear norm, and weighted nuclear norm minimization problems are derived to find a low-rank matrix of implemented Hankel matrix from the signal. A Robust Principal Component used to solve a low-rank-sparse matrix finds a low-rank Hankel matrix by solving a minimization problem numerically. The results show that the given methods are efficient in reconstructing and recovering the signals with a rate of more than 96%, with small values of mean square errors
The root-mean square-radius of proton, neutron, matter and charge radii, energy level, inelastic longitudinal form factors, reduced transition probability from the ground state to first-excited 2+ state of even-even isotopes, quadrupole moments, quadrupole deformation parameter, and the occupation numbers for some calcium isotopes for A=42,44,46,48,50 are computed using fp-model space and FPBM interaction. 40Ca nucleus is regarded as the inert core for all isotopes under this model space with valence nucleons are moving throughout the fp-shell model space involving 1f7/2, 2p3/2, 1f5/2, and 2p1/2 orbits. Model space is used to present calculations using FPBM intera
... Show MoreHartree-Fock calculations for even-even Tin isotopes using
Skyrme density dependent effective nucleon-nucleon interaction are
discussed systematically. Skyrme interaction and the general formula
for the mean energy of a spherical nucleus are described. The charge
and matter densities with their corresponding rms radii and the
nuclear skin for Sn isotopes are studied and compared with the
experimental data. The potential energy curves obtained with
inclusion of the pairing force between the like nucleons in Hartree-
Fock-Bogoliubov approach are also discussed.
The radial wave functions of the Bear–Hodgson potential have been used to study the ground state features such as the proton, neutron and matter densities and the as- sociated rms radii of two neutrons halo 6He, 11Li, 14Be and 17B nuclei. These halo nuclei are treated as a three-body system composed of core and outer two-neutron (Core + n + n). The radial wave functions of the Bear–Hodgson potential are used to describe the core and halo density distributions. The interaction of core-neutron takes the Bear–Hodgson potential form. The outer two neutrons of 6He and 11Li interact by the realistic interaction REWIL whereas those of 14Be and 17B interact by the realistic interaction of HASP. The obtained results show that this model succee
... Show MoreThe effect of the tensor term in the Skyrme interaction has been estimated in calculating the static and dynamic nuclear properties in sd and fp-shell model spaces nuclei. The nuclear shell gaps have been studied with different Skyrme parameterizations; Skxta and Skxtb with tensor interaction, SkX, SkM, and SLy4 without tensor interaction, and Skxcsb with consideration of the effect of charge symmetry breaking. We have examined the stability of N = 28 for 42Si and 48Ca. The results showed that the disappearance of the magicity occurs in the shell closure of 42Si. Furthermore, excitation energy, quadrupole deformation, neutron separation energy, pairing energy, and density profile have also been calculated. Quadrupole deformation indicates a
... Show MoreIn this paper, an approximate solution of nonlinear two points boundary variational problem is presented. Boubaker polynomials have been utilized to reduce these problems into quadratic programming problem. The convergence of this polynomial has been verified; also different numerical examples were given to show the applicability and validity of this method.
Modern agriculture is challenged by soil degradation, nutrient depletion, plant diseases, and excessive dependence on chemical fertilizers and pesticides. By examining different strains of Pantoea, the study highlights their role in promoting plant growth, improving their tolerance to stress, reducing reliance on synthetic agricultural inputs, and contributing to more sustainable and environmentally friendly agricultural practices. Using a combination of practical qualitative methods and reliable quantitative data, the research gathers extensive information on how these microbes impact various crops and key soil health indicators. The improvements in plant growth statistics and nutrient levels are often quite astonishing. The result
... Show MoreIraqi EFL teachers face problems in teaching “English for Iraq Series” for primary public school pupils. In this paper, the researchers are going to identify the main problems faced by our teachers and try to find solutions to these problems. To achieve the aim of the study, list of questions asked and from teachers’ responses, the researchers have got an idea about the main problems which are related to textbook material, parents, learners, environment and technology. Therefore, the researchers adapted a questionnaire to achieve the purpose of the study with some changes and modifications. This questionnaire with five point scale (strongly agree, agree, undecided, disagree, strongly disagree). To achieve face validity, the
... Show MoreIn this paper, a new hybrid algorithm for linear programming model based on Aggregate production planning problems is proposed. The new hybrid algorithm of a simulated annealing (SA) and particle swarm optimization (PSO) algorithms. PSO algorithm employed for a good balance between exploration and exploitation in SA in order to be effective and efficient (speed and quality) for solving linear programming model. Finding results show that the proposed approach is achieving within a reasonable computational time comparing with PSO and SA algorithms.
Modern agriculture is challenged by soil degradation, nutrient depletion, plant diseases, and excessive dependence on chemical fertilizers and pesticides. By examining different strains of Pantoea, the study highlights their role in promoting plant growth, improving their tolerance to stress, reducing reliance on synthetic agricultural inputs, and contributing to more sustainable and environmentally friendly agricultural practices. Using a combination of practical qualitative methods and reliable quantitative data, the research gathers extensive information on how these microbes impact various crops and key soil health indicators. The improvements in plant growth statistics and nutrient levels are often quite astonishing. The result
... Show MoreOptimization is essentially the art, science and mathematics of choosing the best among a given set of finite or infinite alternatives. Though currently optimization is an interdisciplinary subject cutting through the boundaries of mathematics, economics, engineering, natural sciences, and many other fields of human Endeavour it had its root in antiquity. In modern day language the problem mathematically is as follows - Among all closed curves of a given length find the one that closes maximum area. This is called the Isoperimetric problem. This problem is now mentioned in a regular fashion in any course in the Calculus of Variations. However, most problems of antiquity came from geometry and since there were no general methods to solve suc
... Show More