Four different spectrophotometric methods are used in this study for the determination of Sulfamethoxazole and sulfanilamide drugs in pharmaceutical compounds, synthetic samples, and in their pure forms. The work comprises four chapters which are shown in the following: Chapter One: Includes a brief for Ultraviolet-Visible (UV-VIS) Absorption spectroscopy, antibacterial drugs and sulfonamides with some methods for their determination. The chapter lists two methods for optimization; univariate method and multivariate method. The later includes different types, two of these were mentioned; simplex method and design of experiment method. Chapter Two: Includes reaction of the two studied drugs with sodium nitrite and hydrochloric acid for diazotization reaction followed by coupling with diphenylamine in acidic medium to form, a blue colored azo dye compound which exhibits maximum absorption (λmax) at 530 nm for sulfamethoxazole complex and 531 nm for sulfanilamide complex against the reagent blank and the concentration of these drugs were determined spectrophotometrically. The optimum reaction conditions and other analytical parameters were evaluated. In addition to classical univariate optimization, modified simplex method has been applied in optimization of the variables affecting the color producing reaction. The results show better optical characteristics for calibration curves and statistical data were obtained under optimum conditions obtained by multi simplex optimization, in comparison with those obtained via univariate method for two studied drugs. Beer’s law obeyed in the concentration range of 0.5-12.0 μg.mL-1, 0.5-7.0 μg.mL-1 for sulfamethoxazole and sulfanilamide respectively with molar absorptivity of 4.9617×104 L.mol-1.cm-1 for sulfamethoxazole and 5.9185×104 L.mol-1.cm-1 for sulfanilamide. The detection limits were 0.036 μg.mL-1 and 0.016 µg.mL-1 for the two complexes respectively by simplex method. No interferences from the studied excipients on the determination of these drugs were found therefore, the proposed methods were applied successfully II for the determination of the sulfamethoxazole and sulfanilamide in pharmaceutical compound and in synthetic samples. Chapter Three: Is based on the formation of condensation complexes of each drug with sodium 1,2-naphthoquinon-4-sulfonate as a chromogenic reagent. The absorbance values, for the formed complexes were measured at 460 nm for sulfamethoxazole and 455 nm for sulfanilamide; against reagent blank. Different variables affecting the completion of reaction have been carefully optimized following the classical univariate sequence and design of experiment (DOE) method and the results were obtained under optimum conditions by (DOE) optimization which shows better optical characteristics for calibration curves and statistical data in comparison with those obtained via univariate method for two studied drugs. The calibration graphs are linear in the ranges of (5.0-50.0) µg.mL-1 for sulfamethoxazole and (5.0-30.0) µg.mL-1 for sulfanilamide with detection limit 0.359 µg.mL-1for sulfamethoxazole complex and 0.536 µg.mL-1 for sulfanilamide complex. The molar absorptivity was found to be (7.0918×104 L.mol-1.cm-1) for sulfamethoxazole and (7.0774×104 L.mol-1.cm-1) for sulfanilamide by the design of experiment (DOE) method. Finally no interferences from the studied excipients on the determination of these drugs were found. The proposed methods have been successfully applied for the determination of sulfamethoxazole and sulfanilamide in their pharmaceutical preparation and synthetic samples. Chapter Four: Includes two parts; Derivative spectrophotometry and partial least-squares (PLS). Derivative spectrophotometry is based on the first and second derivative spectra of absorption which has been applied for simultaneous spectrophotometric determination of sulfamethoxazole and sulfanilamide in their mixture in the ultraviolet region. The method offers an advantage of getting rid of the resulting error in the values of absorption because of the presence of each drug with the presence of interferences from the excipients. It was found that the method is able to accurately estimate sulfamethoxazole in the range of (2.0-50.0) μg.mL-1; in mixtures containing III (2.0-30.0) μg.mL-1 of sulfanilamide, as (interferent). The results obtained, with the first derivative measurements, indicate that when the concentration of sulfanilamide is kept constant and the concentration of sulfamethoxazole varied, the peak amplitudes are measured at peak-to-baseline (223, 254,287 nm), peak to peak height between (223- 254 nm), (254-287nm). Moreover, the height at the zero cross of sulfanilamide at (235.62, 258.72 nm), heightto-height of the two zero crosses between (235.62-258.72 nm) and area under peak between (241.95-267.04 nm), (267.04-330 nm) were found to be in proportion to the sulfamethoxazole concentration therefore they are used for the determination of it. The careful inspection of the second derivative spectra obtained for the mentioned mixtures of sulfamethoxazole and sulfanilamide shows that peak to basline is at (239.5, 263.5, 267.75, 301, 215 nm) , height to basline is at zero cross is at (245.86, 271.28 nm) , peak to peak is between (239.5-264.25 nm), (239.5-267.75 nm), (271.28-301 nm), (215-239.5 nm), height to height is at two zero cross (245.86-271.28 nm) in addition to peak area at the interval between (254.12-281 nm), (286.95- 329.5 nm), (221.75-254.12 nm) measurements at specified wavelength could be used to quantify the exact concentration of sulfamethoxazole in presence of sulfanilamide. Sulfanilamide was determined for the range of (2.0-50.0) μg.mL-1; in a mixture containing (2.0-50.0) μg.mL-1 of sulfamethoxazole as (interferent). The procedure gave good results over the studied range of concentration depending on peak-to-baseline at (224, 246, 271 nm), height at zero cross at (241.95, 267.04 nm), peak to peak between (224-246 nm), (246-271 nm), height to height at two zero cross (241.95-271 nm) and area under the peak at (235.62-258.72 nm) measurements were found to be used for the determination of sulfanilamide in the first derivative technique. On other situation, the wavelengths are at 218 nm, 231 nm, 260 nm and 278 nm (peak to base line measurements), and height at two zero cross at 254 nm and 281 nm, and peak to peak measurements between (218-231 nm), (231-260 nm) and (260-278 nm), and height at zero cross at (254, 281 nm), wavelengths at (210-224 nm) , (224-245.84 nm) and (271.28-330 nm) peak area at the interval measurements were used for the estimation of sulfanilamide on second derivative.
In this research, the mechanism of cracks propagation for epoxy/ chopped carbon fibers composites have been investigated .Carbon fibers (5%, 10%, 15%, and 20%) by weight were used to reinforce epoxy resin. Bending test was carried out to evaluate the flexural strength in order to explain the mechanism of cracks propagation. It was found that, the flexural strength will increase with increasing the percentage weight for carbon fibers. At low stresses, the cracks will state at the lower surface for the specimen. Increasing the stresses will accelerate the speed of cracks until fracture accorded .The path of cracks is changed according to the distributions of carbon fibers
The research took the spatial autoregressive model: SAR and spatial error model: SEM in an attempt to provide practical evidence that proves the importance of spatial analysis, with a particular focus on the importance of using regression models spatial and that includes all of the spatial dependence, which we can test its presence or not by using Moran test. While ignoring this dependency may lead to the loss of important information about the phenomenon under research is reflected in the end on the strength of the statistical estimation power, as these models are the link between the usual regression models with time-series models. The spatial analysis had been applied to Iraq Household Socio-Economic Survey: IHS
... Show MoreI
In this study, optical fibers were designed and implemented as a chemical sensor based on surface plasmon resonance (SPR) to estimate the age of the oil used in electrical transformers. The study depends on the refractive indices of the oil. The sensor was created by embedding the center portion of the optical fiber in a resin block, followed by polishing, and tapering to create the optical fiber sensor. The tapering time was 50 min. The multi-mode optical fiber was coated with 60 nm thickness gold metal. The deposition length was 4 cm. The sensor's resonance wavelength was 415 nm. The primary sensor parameters were calculated, including sensitivity (6.25), signal-to-noise ratio (2.38), figure of merit (4.88), and accuracy (3.2)
... Show MoreAbstract :H.pylori is an important cause of gastric duodenal disease, including gastric ulcers, Mucosa-associated lymphoid tissue (MALT), and gastric carcinoma. biosensors are becoming the most extensively studied discipline because the easy, rapid, low-cost, highly sensitive, and highly selective biosensors contribute to advances in next-generation medicines such as individualized medicine and ultrasensitive point-of-care detection of markers for diseases. Five of ten patients diagnosed with H.pylori ranging in age from 15–85 participated in this research. who [gastritis, duodenitis, duodenal ulcer (DU), and peptic ulcer (PU)] Suspected H.pylori colonies w
... Show MoreThis paper reports a comprehensive study on the behavior of concavely curved soffit reinforced concrete (RC) beams strengthened in flexure with carbon fiber-reinforced polymer (CFRP) composites under static loading. The main objective of this paper is to explore the effect of surface concavity on the bond performance of externally bonded wet layup CFRP sheets and laminates. An experimental program consisting of flexural strengthening of 24 RC beams with concavely curved soffits was carried out. All specimens were simply supported RC beams tested under three-point bending. Of the 24 beams, 6 beams were flat soffit RC beams, and the remainder were fabricated with concavely curved soffits with a degree of curvature that is ranging from 5 mm/m
... Show MoreThe present study aims to establish an empirical correlation between biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) of the sewage flowing in Al-Diwaniyah wastewater treatment plant. The strength of the wastewater entering the plant varied from medium to high. High concentrations of BOD5 and COD in the effluent were obtained due to the poor performance of the plant. This was observed from the BOD5 /COD ratios that did not confirm with the typical ratios for the treated sewage. Regression equations for BOD5 and COD removal percentages were suggested which can be used to evaluate rapid effluent assessment after the treatment processes or optimal process control to improve the performance of wastewater treatment plants.
... Show MoreElectro-chemical Machining is significant process to remove metal with using anodic dissolution. Electro-chemical machining use to removed metal workpiece from (7025) aluminum alloy using Potassium chloride (KCl) solution .The tool used was made from copper. In this present the optimize processes input parameter use are( current, gap and electrolyte concentration) and surface roughness (Ra) as output .The experiments on electro-chemical machining with use current (30, 50, 70)A, gap (1.00, 1.25, 1.50) mm and electrolyte concentration (100, 200, 300) (g/L). The method (ANOVA) was used to limited the large influence factors affected on surface roughness and found the current was the large influence f
... Show MoreRutting is mainly referring to pavement permanent deformation, it is a major problem for flexible pavement and it is a complicated process and highly observed along with many segments of asphalt pavement in Iraq. The occurrence of this defect is related to several variables such as elevated temperatures and high wheel loads. Studying effective methods to reduce rutting distress is of great significance for providing a safe and along-life road. The asphalt mixture used to be modified by adding different types of additives. The addition of additives typically excesses stiffness, improves temperature susceptibility, and reduces moisture sensitivity. For this work, steel fibres have been used for modifying asphalt mixture as they incorp
... Show MoreFourier Transform-Infrared (FT-IR) spectroscopy was used to analyze gasoline engine oil (SAE 5W20) samples that were exposed to seven different oxidation times (0 h, 24 h, 48 h, 72 h, 96 h, 120 h, and 144 h) to determine the best wavenumbers and wavenumber ranges for the discrimination of the oxidation times. The thermal oxidation process generated oil samples with varying total base number (TBN) levels. Each wavenumber (400–3900 cm−1) and wavenumber ranges identified from the literature and this study were statistically analyzed to determine which wavenumbers and wavenumber ranges could discriminate among all oxidation times. Linear regression was used with the best wavenumbers and wavenumber ranges to predict oxidation time.
... Show More