Preferred Language
Articles
/
tBbXlYcBVTCNdQwCZVa4
Threshold Current Density of Al0.1Ga0.9N/GaN Triple Quantum Well Laser
...Show More Authors

Semiconductor laser is used in processing many issues related to the scientific, military, medical, industrial and agricultural fields due to its unique properties such as coherence and high strength where GaN-based components are the most efficient in this field. Current technological developments mention to the strong connection of GaN with sustainable electronic and optoelectronic devices which have high-efficiency. The threshold current density of Al0.1Ga0.9N/GaN triple quantum well laser structure was investigated to determine best values of the parameters affecting the threshold current density that are well width, average thickness of active region, cavity length, reflectivity of cavity mirrors and optical confinement factor. The optimum value of the threshold current density is 2670 A/cm2 was obtained when the well width (w= 2.5 nm), reflectivity of cavity mirrors (R1=0.75, R2=0.9), cavity length (L=2mm), average thickness of active region (d= 11.5 nm), and optical confinement factor ( Γ= 0.034) at room temperature.

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Jan 01 2022
Journal Name
3rd International Scientific Conference Of Alkafeel University (iscku 2021)
Exposure and etching time effects on the fission track density in CR-39 detectors using teeth samples
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Wed Nov 08 2023
Journal Name
Technologies And Materials For Renewable Energy, Environment, And Sustainability: Tmrees23fr
Studying the relationship between the number of unit cells and the dislocation density of a crystal through the x-ray diffraction pattern of barium oxide nanoparticles
...Show More Authors

In this research, the X-ray diffraction pattern was used, which was obtained experimentally after preparation of barium oxide powder. A program was used to analyze the X-ray diffraction lines of barium oxide nanoparticles, and then the particle size was calculated by using the Williamson-Hall method, where it was found that the value of the particle size is 25.356 nm. Also, the dislocation density was calculated, which is equal to1.555 x1015 (lines/nm2), and the value of the unit cell number was also calculated, as it is equal to 23831.

View Publication
Scopus (2)
Scopus Crossref
Publication Date
Sat Jan 05 2019
Journal Name
Iraqi Journal Of Physics
Study of optical bistability in a fully optimized laser Fabry-Perot system
...Show More Authors

The analytical study of optical bistability is concerned in a fully
optimized laser Fabry-Perot system. The related phenomena of
switching dynamics and optimization procedure are also included.
From the steady state of optical bistability equation can plot the
incident intensity versus the round trip phase shift (φ) for different
values of dark mistuning 




12
,
6
,
3
,
1.5
0 , o
   
 or finesse (F= 1, 5, 20,
100). In order to obtain different optical bistable loops. The inputoutput
characteristic for a nonlinear Fabry-Perot etalon of a different
values of finesse (F) and using different initial detuning (φ0) are used
in this rese

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Oct 14 2021
Journal Name
Iraqi Journal Of Physics
Investigation of nonlinear optical properties for laser dyes-doped polymer thin film
...Show More Authors

Solutions of dyes Rhodamine 6G (Rh6G) and Coumarin480(C480) were prepared at five concentrations (1x10-3, 5x10-4, 1x10-4, 5x10-5 and1x10-5) mol/l, the mixing was stirred to obtain on a homogenous solution, the(poly methyl-methacrylate) (PMMA) was solved by chloroform solvent with certain ratio, afterward (PMMA+Rh6G) and (PMMA+C480) thin films were prepared by casting method on glass block which has substrate with dimensions (7.5 x2.5)cm2, the prepared samples were left in dark place at room temperature for 24 hours to obtain uniform and homogenous thin films. UV-VIS absorption spectra, transmission spectra and fluorescence spectra were done to measure linear refractive index and linear absorption coefficient. The nonlinear optical proper

... Show More
View Publication Preview PDF
Publication Date
Mon Feb 18 2019
Journal Name
Iraqi Journal Of Physics
Preparation and characterization of colloidal CdTe nanoparticles by laser ablation in liquids
...Show More Authors

Nanoparticles generation by laser ablation of a solid target in a liquid environment is an easy method. Cadmium Telluride (CdTe) colloidal nanoparticles have been synthesized by laser ablation Nd:YAG with wavelengths of 1064nm and double frequency at 532 nm, number of pulses 50 pulses, with pulse energy= 620mJ, 700mJ of a solid target CdTe is immersed in double distilled deionized water (DDIW) and in methanol liquid. Influences of the laser energy and different solutions on the formation and optical characterization of the CdTe nanoparticles have been studied using atomic force microscope (AFM) and the UV-Vis absorption. As a results, it leads to the absorbance in UV-Vis spectra of samples prepared in water at laser wavelength of 532nm i

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Enhancement of Electron Temperature under Dense Homogenous Plasma by Pulsed Laser Beam
...Show More Authors

The applications of hot plasma are many and numerous applications require high values of the temperature of the electrons within the plasma region. Improving electron temperature values is one of the important processes for using this specification in plasma for being adopted in several modern applications such as nuclear fusion, plating operations and in industrial applications. In this work, theoretical computations were performed to enhance electron temperature under dense homogeneous plasma. The effect of   power and duration time of pulsed Nd:YAG laser   was studied on the heating of   plasmas  by inverse bremsstrahlung  for  several values for the electron density ratio. There results for these ca

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Nov 21 2023
Journal Name
Mater Sci: Mater Electron
Pulsed laser deposition of nanostructured CeO2 antireflection coating for silicon solar cell
...Show More Authors

Increasing the power conversion efficiency (PCE) of silicon solar cells by improving their junction properties or minimizing light reflection losses remains a major challenge. Extensive studies were carried out in order to develop an effective antireflection coating for monocrystalline solar cells. Here we report on the preparation of a nanostructured cerium oxide thin film by pulsed laser deposition (PLD) as an antireflection coating for silicon solar cell. The structural, optical, and electrical properties of a cerium oxide nanostructure film are investigated as a function of the number of laser pulses. The X-ray diffraction results reveal that the deposited cerium oxide films are crystalline in nature and have a cubic fluorite. The field

... Show More
View Publication
Scopus (1)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Jun 08 2023
Journal Name
Iraqi Journal Of Laser
PDF Angular Laser Cleaning of Aluminum Al-4004 with Different Spot Sizes
...Show More Authors

Abstract: When it comes to applications in welding, cutting, and surface engineering, the utilization of high-power fiber-delivered beams from solid-state lasers offers several benefits. This paper addresses the issue of cleaning the surface of the samples with different spot sizes (50, 100 and 200) (industrial ytterbium fiber laser) to prepared it to be welded. Angular laser cleaning with incident angles (5, 10, 15, 20, 25, 30) ° with different powers (3, 5, 7, 10) W and hatch distance 0.001 was use for implemented.

View Publication Preview PDF
Publication Date
Mon Jul 01 2013
Journal Name
Optics & Laser Technology
Evaluation of PMMA joining to stainless steel 304 using pulsed Nd:YAG laser
...Show More Authors

This paper reports an experimental study of welding of dissimilar materials between transparent Polymethylmethacrylate (PMMA) and stainless steel 304 sheets using a pulsed mode Nd:YAG laser. The process was carried out for two cases; laser transmission joining (LTJ) and conduction joining (CJ). The former is achieved when the joint is irradiated from the polymer side and the latter when the joint is irradiated from the opposite side (metal side). The light and process parameters represented by the peak power (Pp), pulse duration (τ), pulse repetition rate (PRR), scanning speed (ν) and pulse shape have a significant effect on the joint strength (Fb), joint bead width (b), joint quality and appearance. The optimum parameters were determined

... Show More
View Publication
Scopus (74)
Crossref (67)
Scopus Clarivate Crossref
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
The effects of laser intensities on nonlinear properties for Ag nanoparticles colloid
...Show More Authors

A huge potential from researchers was presented for enhancing the nonlinear optical response for materials that interacts by light. In this work, we study the nonlinear optical response for chemically prepared nano- fluid of silver nanoparticles in de-ionized water with TSC (Tri-sodium citrate) protecting agent. By the means of self-defocusing technique and under CW 473 nm blue laser, the reflected diffraction pattern were observed and recorded by CCD camera. The results demonstrate that, the Ag nano-fluid shows a good third order nonlinear response and the magnitude of the nonlinear refractive index was in the order of 10−7 cm2/W. We determine the maximum change of the nonlinear refractive index and the related phase shift for the mat

... Show More
View Publication Preview PDF
Crossref (1)
Crossref