Semiconductor laser is used in processing many issues related to the scientific, military, medical, industrial and agricultural fields due to its unique properties such as coherence and high strength where GaN-based components are the most efficient in this field. Current technological developments mention to the strong connection of GaN with sustainable electronic and optoelectronic devices which have high-efficiency. The threshold current density of Al0.1Ga0.9N/GaN triple quantum well laser structure was investigated to determine best values of the parameters affecting the threshold current density that are well width, average thickness of active region, cavity length, reflectivity of cavity mirrors and optical confinement factor. The optimum value of the threshold current density is 2670 A/cm2 was obtained when the well width (w= 2.5 nm), reflectivity of cavity mirrors (R1=0.75, R2=0.9), cavity length (L=2mm), average thickness of active region (d= 11.5 nm), and optical confinement factor ( Γ= 0.034) at room temperature.
Introduction: All-ceramic crowns are widely used in prosthodontics and cosmetic dentistry due to their good esthetic and proper physical properties. Chipping of ceramic is one of the most common post-insertion complications, that can be fixed either extraoral or intraorally. The latter is time time-effective alternative, less traumatic, and low-cost. A newer objective method of laser is a surface modification of ceramics to increase surface roughness. The aim of this study is to provide a review of Er,Cr;YSGG (2960nm) in intraoral repair and shear bond strength (SBS). Method: A thorough search considering Google Scholar and PubMed published data and ten articles found wh
... Show MoreBreast mass is by far the most important clinical problem that concerns the breast today. This study was carried out to evaluate diode laser as a cutting tool in breast mass excision and as a hemostatic tool for coagulation during surgery. Using 810 nm diode laser with optical fiber 600μm in diameter of conical tip, udder (cow's breast) tissue, and three female patients (mean age of 35.5 y with clinically palpable breast mass) had been used in this study. The patients were followed up regularly postoperatively. In preliminary work on udder tissue, the power needed for cutting and excision was 15W (power density= 5.3 kW/cm2). The time consumed for excision of a piece of udder tissue, 40×10×3 mm in dimensions was 5 min. The depth range
... Show MoreBackground: Acne is a common disorder experienced by adolescents and persists into adulthood in approximately 12%–14% of cases with psychological and social implications of high gravity. Fractional resurfacing employs a unique mechanism of action that repairs a fraction of skin at a time. The untreated healthy skin remains intact and actually aids the repair process, promoting rapid healing with only a day or two of downtime. Aims: This study, was designed to evaluate the safety and effectiveness of fractional photothermolysis (fractionated Er: YAG laser 2940nm) in treating atrophic acne scars. Methods: 7 females and 3 males with moderate to severe atrophic acne scarring were enrolled in this study that attained private clinic for Derm
... Show MoreIn this work, a CW CO2 laser was used for cutting samples of the fiber-reinforced
plastics (FRP) of three different types of reinforcing material; aramide, glass and carbon.
Cutting process was investigated throughout the variation of some parameters of cutting
process and their effects on cutting quality as well as the effect of an inert gas exist in the
interaction region and finally using a mechanical chopper in order to enhance the cutting
quality. Results obtained explained the possibility to perform laser cutting with high
quality in these materials by good control of the parameters and conditions of the process.
Improvement of optoelectrical characteristics of phosphorus diffused silicon photodiodes by Q-switched Nd:YAG laser pulses was investigated. Laser pulses have dissolved the precipitation of phosphorus resulted during thermal diffusion process. The experimental data show that responsivity higher than (0.32 A/W) at 850 nm can be achieved after laser annealing with (1.5 MW/cm2) for 6 shots.
The research include a pulsed Nd: YAG Laser with (300µs) pulse duration in the TEM00 mode at (1.06µm) wavelength for energies between (0.5-3) J was employed to drill Brass material which is use in industrial applications. The process of drill was assisted by an electric field. This resulted in an increase in the hole aspect ratio by the value (45%) and decrease in the hole taper by the value (25%) of its value under ordinary drilling conditions using the same input energy.
Fluorescence excitation by Nd:YAG pumped dye laser and single vibrational level fluorescence
spectra of 1,3 benzodioxole in a supersonic jet have been obtained and interpreted. The previous assignment of
the 0 0
0 band was incorrect. In addition, many other bands involving n20 and n19 vibrations of a2 symmetry were
confirmed. As far as a1 totally symmetric vibration is concerned. The n14 was assigned to be located in the fivemembered
ring whereas n13 seem to be located in the benzene ring as a result of the electronic transition in the
benzene ring which affects n13 and not n14 wavenumber.
This study investigates the digestion of cow dung (CD) for biogas production at laboratory scales. The study was carried out through anaerobic fermentation using cow dung as substrate. The digester was operated at ambient temperatures of 39.5 °C for a period of 10 days. The effect of iron powder in controlling the production of hydrogen sulfide (H2S) has been tested. The optimum concentration of iron powder was 4g/L with the highest biogas production. A Q – swatch Nd:YAG laser has been used to mix and homogenize the components of one of the six digesters and accelerate digestion. At the end of digestion, all digestions effluent was subjected to 5 laser pulses with 250mJ/pules to dispose waste biomass.
This work describes an experimental setup to evaluate the photodynamictoxicity of 650 nm diode laser and 532 nm Frequency-doubled Q-Switched Nd:YAG laser on the growth of Candida albicans as well as the potential fungicidal effect when combining the laser irradiation with specific photosensitizers namely methylene blue, toluidine blue, acridine orange and safranin O. In this study the findings showed that the number of colony-forming units per millilitre (CFU/ml) of C. albicans decreased with increasing exposure time. In particular in the case of the frequency doubled Nd:YAG laser combined with safranin O, the best lethal effect occurred at 11 minutes exposure time with 2.26 J/cm² energy density (89.18% reduction) in comparison with the
... Show More