This research includes the synthesis, characterization, and investigation of liquid crystalline properties of new rod-shaped liquid crystal compounds 1,4- phenylene bis(2-(5-(four-alkoxybenzylidene)-2,4-dioxothiazolidin-3- yl)acetate), prepared thiazolidine-2,4-dione (I) by the thiourea reaction with chloroacetic acid and water in the presence of the concentrated hydrochloric acid. The n-alkoxy benzaldehyde (II)n synthesized from the reacted 4- hydreoxybenzaldehyde and n-alkyl bromide with potassium hydroxide, and then the compound (I) was reacted with (II)n in the presence of piperidine to produce compounds (III)n. Also, hydroquinone was converted into a corresponding compound (IV) by refluxing with two moles of chloracetyl chloride in pyridine and DMF. After that, the compounds (III)n was interacted with sodium acetate to form compounds (V)n. FT-IR and 1H-NMR spectroscopy were really used to determine the structures of the produced substances. By using the polarized optical microscopy, these mesogens' mesomorphic characteristics were studied (POM). The produced compounds displayed enantiotropic liquid crystal phases, while the substances (V)6–8 displayed a smectic enantiotropy in a variation on the nematic phases.
The fast evolution of cyberattacks in the Internet of Things (IoT) area, presents new security challenges concerning Zero Day (ZD) attacks, due to the growth of both numbers and the diversity of new cyberattacks. Furthermore, Intrusion Detection System (IDSs) relying on a dataset of historical or signature‐based datasets often perform poorly in ZD detection. A new technique for detecting zero‐day (ZD) attacks in IoT‐based Conventional Spiking Neural Networks (CSNN), termed ZD‐CSNN, is proposed. The model comprises three key levels: (1) Data Pre‐processing, in this level a thorough cleaning process is applied to the CIC IoT Dataset 2023, which contains both malicious and t
This research aims to clarify the importance of an accounting information system that uses artificial intelligence to detect earnings manipulation. The research problem stems from the widespread manipulation of earning in economic entities, especially at the local level, exacerbated by the high financial and administrative corruption rates in Iraq due to fraudulent accounting practices. Since earning manipulation involves intentional fraudulent acts, it is necessary to implement preventive measures to detect and deter such practices. The main hypothesis of the research assumes that an accounting information system based on artificial intelligence cannot effectively detect the manipulation of profits in Iraqi economic entities. The researche
... Show MoreAromatic Schiff-bases are known to have antibacterial activity, but most of these compounds are sparingly soluble in water. The present work describes the synthesis of new Schiff-bases derived from branched aminosugars. Treatment of 3-Amino-3-Cyano-3-Deoxy-1,2:5,6-Di-O-Isopropylene-α-D-Allofuranose (1) with the aldehydes (2) under reflux in methanol afforded the Schiff-bases (3) in good yields. The new Schiff-bases were in accord with their NMR, IR spectral data and elemental analysis.
The present study aims to explore the effectiveness of a proposed study unit based on the funds of knowledge theory in developing the attitudes towards cultural identity and the proposed study unit. In order to achieve the goal of the study, the two researchers followed the quasi-experimental approach, where the study sample consisted of (28) female students of the fifth-grade at Al-Jeelah Basic Education School, Al-Dakhiliyah Governorate in the Sultanate of Oman. The data were collected by two scales: the first is a scale of attitudes towards cultural identity consisting of (26) items. The second was a scale of attitudes towards the proposed study unit, which consisted of (24) items. The results of the study revealed that the effect of
... Show MoreThis paper presents a new design of a nonlinear multi-input multi-output PID neural controller of the active brake steering force and the active front steering angle for a 2-DOF vehicle model based on modified Elman recurrent neural. The goal of this work is to achieve the stability and to improve the vehicle dynamic’s performance through achieving the desired yaw rate and reducing the lateral velocity of the vehicle in a minimum time period for preventing the vehicle from slipping out the road curvature by using two active control actions: the front steering angle and the brake steering force. Bacterial forging optimization algorithm is used to adjust the parameters weights of the proposed controller. Simulation resul
... Show MoreIn this paper, we present multiple bit error correction coding scheme based on extended Hamming product code combined with type II HARQ using shared resources for on chip interconnect. The shared resources reduce the hardware complexity of the encoder and decoder compared to the existing three stages iterative decoding method for on chip interconnects. The proposed method of decoding achieves 20% and 28% reduction in area and power consumption respectively, with only small increase in decoder delay compared to the existing three stage iterative decoding scheme for multiple bit error correction. The proposed code also achieves excellent improvement in residual flit error rate and up to 58% of total power consumption compared to the other err
... Show MoreThis paper proposes an on-line adaptive digital Proportional Integral Derivative (PID) control algorithm based on Field Programmable Gate Array (FPGA) for Proton Exchange Membrane Fuel Cell (PEMFC) Model. This research aims to design and implement Neural Network like a digital PID using FPGA in order to generate the best value of the hydrogen partial pressure action (PH2) to control the stack terminal output voltage of the (PEMFC) model during a variable load current applied. The on-line Particle Swarm Optimization (PSO) algorithm is used for finding and tuning the optimal value of the digital PID-NN controller (kp, ki, and kd) parameters that improve the dynamic behavior of the closed-loop digital control fue
... Show MoreA three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an
... Show More