The Caputo definition of fractional derivatives introduces solution to the difficulties appears in the numerical treatment of differential equations due its consistency in differentiating constant functions. In the same time the memory and hereditary behaviors of the time fractional order derivatives (TFODE) still common in all definitions of fractional derivatives. The use of properties of companion matrices appears in reformulating multilevel schemes as generalized two level schemes is employed with the Gerschgorin disc theorems to prove stability condition. Caputo fractional derivatives with finite difference representations is considered. Moreover the effect of using the inverse operator which transmit the memory and hereditary effects to other terms is examined. The theoretical results is applied to a numerical example. The calculated solution has a good agreement with the exact solution.
A common approach to the color image compression was started by transform
the red, green, and blue or (RGB) color model to a desire color model, then applying
compression techniques, and finally retransform the results into RGB model In this
paper, a new color image compression method based on multilevel block truncation
coding (MBTC) and vector quantization is presented. By exploiting human visual
system response for color, bit allocation process is implemented to distribute the bits
for encoding in more effective away.
To improve the performance efficiency of vector quantization (VQ),
modifications have been implemented. To combines the simple computational and
edge preservation properties of MBTC with high c
Public private partnership PPP is a method to procure public projects in order to achieve additional value for money in terms of efficiency and quality of services. This thesis studies the concepts of PPP, advantages and disadvantages of PPP. In addition, current Iraq infrastructure projects situations and needs, as well as, some aspects relating to the Iraq’s construction market, legal and contract systems were discussed. A financial model was carried out and applied to a real-life case study project. Finally, a survey targeted researchers; public and private- sectors were applied.
In this research, the problem of ambiguity of the data for the project of establishing the typical reform complex in Basrah Governorate was eliminated. The blurry of the data represented by the time and cost of the activities was eliminated by using the Ranking function and converting them into normal numbers. Scheduling and managing the Project in the Critical Pathway (CPM) method to find the project completion time in normal conditions in the presence of non-traditional relationships between the activities and the existence of the lead and lag periods. The MS Project was used to find the critical path. The results showed that the project completion time (1309.5) dinars and the total cost has reached (33113017769) dinars and the
... Show MoreAmong a variety of approaches introduced in the literature to establish duality theory, Fenchel duality was of great importance in convex analysis and optimization. In this paper we establish some conditions to obtain classical strong Fenchel duality for evenly convex optimization problems defined in infinite dimensional spaces. The objective function of the primal problem is a family of (possible) infinite even convex functions. The strong duality conditions we present are based on the consideration of the epigraphs of the c-conjugate of the dual objective functions and the ε-c-subdifferential of the primal objective functions.
The purpose of this paper is to solve the stochastic demand for the unbalanced transport problem using heuristic algorithms to obtain the optimum solution, by minimizing the costs of transporting the gasoline product for the Oil Products Distribution Company of the Iraqi Ministry of Oil. The most important conclusions that were reached are the results prove the possibility of solving the random transportation problem when the demand is uncertain by the stochastic programming model. The most obvious finding to emerge from this work is that the genetic algorithm was able to address the problems of unbalanced transport, And the possibility of applying the model approved by the oil products distribution company in the Iraqi Ministry of Oil to m
... Show MoreBackground: The primary stability of the dental implant is a crucial factor determining the ability to initiate temporary implant-supported prosthesis and for subsequent successful osseointegration, especially in the maxillary non-molar sites. This study assessed the reliability of the insertion torque of dental implants by relating it to the implant stability quotient values measured by the Osstell device. Material and methods: This study included healthy, non-smoker patients with no history of diabetes or other metabolic, or debilitating diseases that may affect bone healing, having non-restorable fractured teeth and retained roots in the maxillary non-molar sites. Primary dental implant stability was evaluated using a torque ratc
... Show MoreIn this paper, a new equivalent lumped parameter model is proposed for describing the vibration of beams under the moving load effect. Also, an analytical formula for calculating such vibration for low-speed loads is presented. Furthermore, a MATLAB/Simulink model is introduced to give a simple and accurate solution that can be used to design beams subjected to any moving loads, i.e., loads of any magnitude and speed. In general, the proposed Simulink model can be used much easier than the alternative FEM software, which is usually used in designing such beams. The obtained results from the analytical formula and the proposed Simulink model were compared with those obtained from Ansys R19.0, and very good agreement has been shown. I
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More