Copper Zinc Sulphide (Cu0.5Zn0.5S) alloy and thin films were fabricated in a vacuum. Nano crystallized (CZS) film with thick 450±20 nm was deposit at substrates glasses using thermal evaporation technique below ~ 2 × 10− 5 mbar vacuum to investigated the films structural, morphological and optical properties depended on annealing temperatures ( as-deposited, 423, 523 and 623) K for one hour. The influences annealed temperature on structurally besides morphologically characteristics on these films were investigated using XRD and AFM respectively. XRD confirms the formation a mixed hexagonal phase of CuS-ZnS in (102) direction with polycrystalline in nature having very fine crystallites size varying from (5.5-13.09) nm. AFM analysis shows the uniform distribution of closely packed grains, grain size for that film diverge on ranges as of (52.37 to 89.25) nm after annealed. The optical properties of all films prepared had been examined for the wavelength range 400 - 1000 nm using UV-Vis-NIR spectrometer. The band gaps of (Cu0.5Zn0.5S) films are obtained in the range of 2.4 to 1.9 eV, which makes it a suitable absorber as well as buffer/window layer for solar cell applications.
In this work, diamond-like carbon (DLC) thin films were prepared from Cyclohexane. Thin films were deposited on quartz substrate by atmospheric pressure Argon plasma jet system. The plasma jet system was applying high voltage sinusoidal waves of frequency 28 kHz and potential difference of 7.5kV peak to peak across the electrodes. The effect of annealing at 400, 500 and 600 °C under vacuum for two hours on optical properties and structural properties of the DLC thin films were investigated. This effect was clarified by X-ray diffraction (XRD), FTIR, UV-Visible absorption, Scanning Electron Microscopy (SEM) and Raman Spectroscopy. The X-ray diffraction patterns for the annealing DLC thin films show two broad peaks at 2θ, 26.62° and 51.58
... Show MoreBaTiO3 thin films have been deposited on Si (111) and glass substrates by using pulsed laser deposition technique. The films were characterized by using X-ray diffraction, atomic force microscope and optical transmission spectra. The films growth on Si after annealing at 873K showed a polycrystalline nature, and exhibited tetragonal structure, while on glass substrate no growth was noticed at that temperature. UV-VIS transmittance measurements showed that the films are highly transparent in the visible wavelength region and near-infrared region for sample annealing on glass substrate. The optical gap of the film were calculated from the curve of absorption coefficient (αhν) 2 vs. hν and was found tobe 3.6 eV at substrate temperature 5
... Show MoreThis research focuses on the synthesis of carbon nanotube (CNT) and Poly(3-hexylthiophene) (P3HT) (pristine polymer) with Ag doped (CNT/ P3HT@Ag) nanocomposite thin films to be utilised in various practical applications. First, four samples of CNT solution and different ratios of the polymer (P3HT) [0.1, 0.3, 0.5, and 0.7 wt.%] are prepared to form thin layer of P3HT@CNT nanocomposites by dip-coating method of Ag. To investigate the absorption and conductivity properties for use in various practical applications, structure, morphology, optical, and photoluminescence properties of CNT/P3HT @Ag nanocomposite are systematically evaluated in this study. In this regard, the UV/Vis/NIR spectrophotometer in the wavelength range of 350 to 7
... Show MoreThin a-:H films were grown successfully by fabrication of designated ingot followed by evaporation onto glass slides. A range of growth conditions, Ge contents, dopant concentration (Al and As), and substrate temperature, were employed. Stoichiometry of the thin films composition was confirmed using standard surface techniques. The structure of all films was amorphous. Film composition and deposition parameters were investigated for their bearing on film electrical and optical properties. More than one transport mechanism is indicated. It was observed that increasing substrate temperature, Ge contents, and dopant concentration lead to a decrease in the optical energy gap of those films. The role of the deposition conditions on value
... Show MorePolycrystalline ingots of cadmium telluride have been synthesized using the direct
reaction technique, by fusing initial component consisting from pure elements in
stoichiometric ratio inside quartz ampoule is evacuated 10-6 torr cadmium telluride has
been grown under temperature at (1070) oC for (16) hr. was used in this study, the phases
observed in growing CdTe compound depend on the temperature used during the growth
process. Crystallography studies to CdTe compound was determined by X-ray diffraction
technique, which it has zinc blend structure and cubic unit cell, which lattice constants is
a=6.478
oA
Thin films of highly pure (99.999%) Tellurium was prepared by high vacuum technique (5*10-5torr), on glass substrates .Thin films have thickness 0.6m was evaporated by thermal evaporation technique. The film deposited was annealed for one hour in vacuum of (5*10-4torr) at 373 and 423 K. Structural and electrical properties of the films are studies. The x-ray diffraction of the film represents a poly-crystalline nature in room temperature and annealed film but all films having different grain sizes. The d.c. electrical properties have been studied at low and at relatively high temperatures and show that the conductivity decreases with increasing temperature at all range of temperature. Two types of conduction mechanisms were found to d
... Show MoreIn this work, thin films of undoped and Al-doped CdO with (0.5, 1 and 2) wt.% were prepared by using thermal vacuum evaporation on glass substrate at room temperature. The optical absorption coefficient (α) of the films was determined from transmittance spectra in the range of wavelength (400-1100) nm. The spectral transmission and the optical energy band gap decrease from 75% and 2.24 eV to 20% and 2.1 eV respectively depending upon the Al content in the films, also our studies include the calculation of the optical constants (refractive index, extinction coefficient, real and imaginary part of dielectric constant) as a function of photon energy. It is evaluated that the optical band gap of
... Show More