Preferred Language
Articles
/
sxcqY5ABVTCNdQwCwIig
Influence of annealing temperature on nano crystalline description for CuZnS thin films
...Show More Authors

Copper Zinc Sulphide (Cu0.5Zn0.5S) alloy and thin films were fabricated in a vacuum. Nano crystallized (CZS) film with thick 450±20 nm was deposit at substrates glasses using thermal evaporation technique below ~ 2 × 10− 5 mbar vacuum to investigated the films structural, morphological and optical properties depended on annealing temperatures ( as-deposited, 423, 523 and 623) K for one hour. The influences annealed temperature on structurally besides morphologically characteristics on these films were investigated using XRD and AFM respectively. XRD confirms the formation a mixed hexagonal phase of CuS-ZnS in (102) direction with polycrystalline in nature having very fine crystallites size varying from (5.5-13.09) nm. AFM analysis shows the uniform distribution of closely packed grains, grain size for that film diverge on ranges as of (52.37 to 89.25) nm after annealed. The optical properties of all films prepared had been examined for the wavelength range 400 - 1000 nm using UV-Vis-NIR spectrometer. The band gaps of (Cu0.5Zn0.5S) films are obtained in the range of 2.4 to 1.9 eV, which makes it a suitable absorber as well as buffer/window layer for solar cell applications.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Apr 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Study Of Thickness And Annealing Temperature Effect On Structural and Optical Properties For ZnO Thin Films
...Show More Authors

  In the present work, We study the structural and optical properties of (ZnO), which are prepared by thermal evaporation technique, where deposit (Zn) on glass substrates at different thicknesses (150,250,350)nm, deposited on glass substrate at R.T. with rate (5 nm sec-1). And then we make oxidation for (Zn) films at temperature (500) and using the air for one hour, and last annealing samples at temperature (400,500) for one hour. The investigation of (XRD) indicates that the (ZnO) films are polycrystalline type of hexagonal with a preferred orientation along (002) to all samples and analysis reveals that the intensity of this orientation increases with the increase of the thickness and annealing temperature.   &nbsp

... Show More
View Publication Preview PDF
Publication Date
Thu Mar 16 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Influence of Annealing and Doping by Copper on Electrical Conductivity of CdTe Thin Films
...Show More Authors

In this research CdTe and CdTe: Cu thin films with different doping ratios (1, 2, 3, 4 and 5) %, were deposited by thermal evaporation technique under vacuum on glass substrates at room temperature in thickness 450 nm.      The measurements of electrical conductivity (σ), and activation energies (Ea1, Ea2),  have been investigated on (CdTe) thin films as a function of doping ratios, as well as the effect of the heat treatment at (373, 423, and 473) K° for one hour on these measurements were calculated and all results are discussed.     The electrical conductivity measurements show all films prepared contain two types of transport mechanisms, and the electrical conductivity (σ) increases where

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 10 2013
Journal Name
International Journal Of Application Or Innovation In Engineering & Management (ijaiem)
The Effect of Annealing Temperature on the Optical Properties of CdS and CdS:Al Thin Films
...Show More Authors

Cadmium sulfide and Aluminum doped CdS thin films were prepared by thermal evaporation technique in vacuum on a heated glass substrates at 373K. A comparison between the optical properties of the pure and doped films was made through measuring and analyzing the transmittance curves, and the effect of the annealing temperature on these properties were estimated. All the films were found to exhibit high transmittance in the visible/ near infrared region from 500nm to 1100nm.The optical band gap energy was found to be in the range 2.68-2.60 eV and 2.65-2.44 eV for CdS and CdS:Al respectively , with changing the annealing temperature from room temperature to 423K.Optical constants such as refractive index, extinction coefficient, and complex di

... Show More
Publication Date
Tue Dec 11 2018
Journal Name
Iraqi Journal Of Physics
Effect of annealing temperature on structural and optical properties of Cr2O3 thin films by PLD
...Show More Authors

In the present work, pulsed laser deposition (PLD) technique was applied to a pellet of Chromium Oxide (99.999% pure) with 2.5 cm diameter and 3 mm thickness at a pressure of 5 Tons using a Hydraulic piston. The films were deposited using Nd: YAG laser λ= (4664) nm at 600 mJ and 400 number of shot on a glass substrate, The thickness of the film was (107 nm). Structural and morphological analysis showed that the films started to crystallize at annealing temperature greater than 400 oC. Absorbance and transmittance spectra were recorded in the wavelength range (300-
4400) nm before and after annealing. The effects of annealing temperature on absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of d

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Sep 07 2008
Journal Name
Baghdad Science Journal
Study the effect of thickness and annealing temperature on the Electrical Properties of CdTe thin Films
...Show More Authors

The electrical properties of polycrystalline cadmium telluride thin films of different thickness (200,300,400)nm deposited by thermal evaporation onto glass substrates at room temperature and treated at different annealing temperature (373, 423, 473) K are reported. Conductivity measurements have been showed that the conductivity increases from 5.69X10-5 to 0.0011, 0.0001 (?.cm)-1 when the film thickness and annealing temperature increase respectively. This increasing in ?d.c due to increasing the carrier concentration which result from the excess free Te in these films.

View Publication Preview PDF
Crossref
Publication Date
Thu Dec 28 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Effect of Annealing Temperature on the Optical Properties of the a-Ge: As Thin Films
...Show More Authors

a-Ge: As thin films have prepared by thermal evaporation teclmique, then they were annealing at various temperatures within the

range (373-473)  K.   The  result of  X-ray di ffraction spectrum  was showing  that  all  the  specimens  remained  in  amorphous structure before and after annealing  process. This paper studied the effect of annealing  temperature as  a  function of  wavelength on  the optical energy gap and optical constants for the a-Ge:As thin  films . Results have showed that there was an increasing in the optical energy gap

{Egopt) values with the in ,;rcasing of the annealing temperatures within

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
World Scientific News
Effect of annealing temperature on the structural and optical properties of CdSe: 1% Ag thin films
...Show More Authors

Publication Date
Mon Oct 01 2012
Journal Name
Iraqi Journal Of Physics
Annealing temperature effect on the structural and optical properties of thermally deposited nanocrystalline CdS thin films
...Show More Authors

A nanocrystalline CdS thin film with 100 nm thickness has been prepared by thermal evaporation technique on glass substrate with substrate temperature of about 423 K. The films annealed under vacuum at different annealing temperature 473, 523 and 573 K. The X-ray diffraction studies show that CdS thin films have a hexagonal polycrystalline structure with preferred orientation at (002) direction. Our investigation showed the grain size of thin films increased from 9.1 to 18.9 nm with increasing the annealing temperature. The optical measurements showed that CdS thin films have direct energy band gap, which decreases with increasing the annealing temperature within the range 3.2- 2.85 eV. The absorbance edge is blue shifted. The absorption

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
The Effect of annealing temperature on the optical properties of (Cu2S)100-x( SnS2 )x thin films
...Show More Authors

Thin films of (Cu2S)100-x( SnS2 )x at X=[ 30,40, &50)]% with thickness (0.9±0.03)µm , had been prepared by chemical spray pyrolysis method on glass substrates at 573 K. These films were then annealed under low pressure of(10-2) mbar ,373)423&473)K for one hour . This research includes , studying the the optical properties of (Cu2S)100-x-(SnS2)x at X=[ 30,40, &50)]% .Moreover studying the effect of annealing on their optical properties , in order to fabricate films with high stability and transmittance that can be used in solar cells. The transmittance and absorbance spectra had been recorded in the wavelength range (310 - 1100) nm in order to study the optical properties . It was found that these films had direct optical band

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Feb 26 2012
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
Study the Effect of Annealing Temperature on the Structural, Optical and Electrical Properties of ZnS Thin Films
...Show More Authors

The structural, optical and electrical properties of ZnS films prepared by vacuum evaporation technique on glass substrate at room temperature and treated at different annealing temperatures (323, 373, 423)K of thickness (0.5)µm have been studied. The structure of these films is determined by X-ray diffraction (XRD). The X-ray diffraction studies show that the structure is polycrystalline with cubic structure, and there are strong peaks at the direction (111). The optical properties investigated which include the absorbance and transmittance spectra, energy band gab, absorption coefficient, and other optical constants. The results showed that films have direct optical transition. The optical band gab was found to be in the range t

... Show More