Preferred Language
Articles
/
sxaHVocBVTCNdQwCfUYv
The Bifurcation analysis of Prey-Predator Model in The Presence of Stage Structured with Harvesting and Toxicity
Abstract<p>For a mathematical model the local bifurcation like pitchfork, transcritical and saddle node occurrence condition is defined in this paper. With the existing of toxicity and harvesting in predator and prey it consist of stage-structured. Near the positive equilibrium point of mathematical model on the Hopf bifurcation with particular emphasis it established. Near the equilibrium point E<sub>0</sub> the transcritical bifurcation occurs it is described with analysis. And it shown that at equilibrium points E<sub>1</sub> and E<sub>2</sub> happened the occurrence of saddle-node bifurcation. At each point the pitch fork bifurcation occurrence is not happened. For the occurrence of local bifurcation illustration there used some numerical simulation.</p>
Crossref
View Publication
Publication Date
Wed Jan 02 2019
Journal Name
Differential Equations And Dynamical Systems
Scopus (15)
Crossref (9)
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Jun 05 2023
Journal Name
Communications In Mathematical Biology And Neuroscience
THE DYNAMICS OF A STAGE-STRUCTURE PREY-PREDATOR MODEL WITH HUNTING COOPERATION AND ANTI-PREDATOR BEHAVIOR

The mathematical construction of an ecological model with a prey-predator relationship was done. It presumed that the prey consisted of a stage structure of juveniles and adults. While the adult prey species had the power to fight off the predator, the predator, and juvenile prey worked together to hunt them. Additionally, the effect of the harvest was considered on the prey. All the solution’s properties were discussed. All potential equilibrium points' local stability was tested. The prerequisites for persistence were established. Global stability was investigated using Lyapunov methods. It was found that the system underwent a saddle-node bifurcation near the coexistence equilibrium point while exhibiting a transcritical bifurcation

... Show More
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Oct 30 2022
Journal Name
Iraqi Journal Of Science
Stability Analysis of a Prey-Predator Model with Prey Refuge and Fear of Adult Predator

     This paper is concerned with a Holling-II stage-structured predator-prey system in which predators are divided into an immature and mature predators. The aim is to explore the impact of the prey's fear caused by the dread of mature predators in a prey-predator model including intraspecific competitions and prey shelters. The theoretical study includes the local and global stability analysis for the three equilibrium points of the system and shows the prey's fear may lead to improving the stability at the positive equilibrium point. A numerical analysis is given to ensure the accuracy of the theoretical outcomes and to testify the conditions of stability of the system near the non-trivial equilibrium points.

Scopus (6)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Feb 27 2024
Journal Name
Mathematical Modelling Of Engineering Problems
Scopus Crossref
View Publication
Publication Date
Tue Jan 10 2012
Journal Name
Iraqi Journal Of Science
THE IMPACT OF DISEASE AND HARVESTING ON THE DYNAMICAL BEHAVIOR OF PREY PREDATOR MODEL

In this paper, a harvested prey-predator model involving infectious disease in prey is considered. The existence, uniqueness and boundedness of the solution are discussed. The stability analysis of all possible equilibrium points are carried out. The persistence conditions of the system are established. The behavior of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that the existence of disease and harvesting can give rise to multiple attractors, including chaos, with variations in critical parameters.

View Publication Preview PDF
Publication Date
Tue Feb 13 2024
Journal Name
Iraqi Journal Of Science
Stability Analysis of A stage Structure Prey-Predator Model with Hollimg Type IV Functional Response

In this paper a stage structure prey-predator model with Hollimg type IV functional response is proposed and analyzed. The local stability analysis of the system is carried out. The occurrence of a simple Hopf bifurcation and local bifurcation are investigated. The global dynamics of the system is investigated with the help of the Lyapunov function. Finally, the analytical obtained results are supported with numerical simulation and the effects of parameters system are discussed. It is observed that, the system has either stable point or periodic dynamics.

View Publication Preview PDF
Publication Date
Mon Feb 01 2021
Journal Name
Journal Of Physics: Conference Series
The Fear Effect on a Food Chain Prey-Predator Model Incorporating a Prey Refuge and Harvesting
Abstract<p>In this paper, we investigate the impact of fear on a food chain mathematical model with prey refuge and harvesting. The prey species reproduces by to the law of logistic growth. The model is adapted from version of the Holling type-II prey-first predator and Lotka-Volterra for first predator-second predator model. The conditions, have been examined that assurance the existence of equilibrium points. Uniqueness and boundedness of the solution of the system have been achieve. The local and global dynamical behaviors are discussed and analyzed. In the end, numerical simulations are confirmed the theoretical results that obtained and to display the effectiveness of varying each parameter</p> ... Show More
Scopus (10)
Crossref (7)
Scopus Crossref
View Publication
Publication Date
Wed Jun 03 2020
Journal Name
Journal Of Applied Mathematics
Order and Chaos in a Prey-Predator Model Incorporating Refuge, Disease, and Harvesting

In this paper, a mathematical model consisting of a prey-predator system incorporating infectious disease in the prey has been proposed and analyzed. It is assumed that the predator preys upon the nonrefugees prey only according to the modified Holling type-II functional response. There is a harvesting process from the predator. The existence and uniqueness of the solution in addition to their bounded are discussed. The stability analysis of the model around all possible equilibrium points is investigated. The persistence conditions of the system are established. Local bifurcation analysis in view of the Sotomayor theorem is carried out. Numerical simulation has been applied to investigate the global dynamics and specify the effect

... Show More
Scopus (6)
Crossref (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
The Dynamics of Modified Leslie-Gower Predator-Prey Model Under the Influence of Nonlinear Harvesting and Fear Effect

A modified Leslie-Gower predator-prey model with fear effect and nonlinear harvesting is developed and investigated in this study. The predator is supposed to feed on the prey using Holling type-II functional response. The goal is to see how fear of predation and presence of harvesting affect the model's dynamics. The system's positivity and boundlessness are demonstrated. All conceivable equilibria's existence and stability requirements are established. All sorts of local bifurcation occurrence conditions are presented. Extensive numerical simulations of the proposed model are shown in form of Phase portraits and direction fields. That is to guarantee the correctness of the theoretical results of the dynamic behavior of the system and t

... Show More
Scopus (20)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Jul 01 2022
Journal Name
Iraqi Journal Of Science
The Effect of Disease and Harvesting on The Dynamics of Prey-Predator System

In this paper an eco-epidemiological system has been proposed and studied analytically as well as numerically. The boundedness, existence and uniqueness of the solution are discussed. The local and global stability of all possible equilibrium point are investigated. The global dynamics is studied numerically. It is obtained that system has rich in dynamics including Hopf bifurcation.

View Publication Preview PDF