Objective This research investigates Breast Cancer real data for Iraqi women, these data are acquired manually from several Iraqi Hospitals of early detection for Breast Cancer. Data mining techniques are used to discover the hidden knowledge, unexpected patterns, and new rules from the dataset, which implies a large number of attributes. Methods Data mining techniques manipulate the redundant or simply irrelevant attributes to discover interesting patterns. However, the dataset is processed via Weka (The Waikato Environment for Knowledge Analysis) platform. The OneR technique is used as a machine learning classifier to evaluate the attribute worthy according to the class value. Results The evaluation is performed using a training data rather than cross validation. The decision tree algorithm J48 is applied to detect and generate the pattern of attributes, which have the real effect on the class value. Furthermore, the experiments are performed with three machine learning algorithms J48 decision tree, simple logistic, and multilayer perceptron using 10-folds cross validation as a test option, and the percentage of correctly classified instances as a measure to determine the best one from them. As well as, this investigation used the iteration control to check the accuracy gained from the three mentioned above algorithms. Hence, it explores whether the error ratio is decreasing after several iterations of algorithm execution or not. Conclusion It is noticed that the error ratio of classified instances are decreasing after 5-10 iterations, exactly in the case of multilayer perceptron algorithm rather than simple logistic, and decision tree algorithms. This study realized that the TPS_pre is the most common effective attribute among three main classes of examined dataset. This attribute highly indicates the BC inflammation.
Breast cancer (BC) is one of the most frequently observed malignancy in females worldwide. Today, tamoxifen (TAM) is considered as the highly effective therapy for treatment of breast tumors. Oxidative stress has implicated strongly in the pathophysiology of malignancies. This study aimed to investigate the changes in the levels of oxidants and antioxidants in patients with newly diagnosed and TAM-treated BC. Sixty newly diagnosed and 60 TAM-treated women with BC and 50 healthy volunteers were included in this study. Parameters including total oxidant capacity (TOC), total antioxidant capacity (TAC), and catalase (CAT) activity were determined before and after treatment with TAM. The serum levels of TOC and oxidative stress index (OSI) were
... Show MoreBreast cancer is the second deadliest disease infected women worldwide. For this
reason the early detection is one of the most essential stop to overcomeit dependingon
automatic devices like artificial intelligent. Medical applications of machine learning
algorithmsare mostly based on their ability to handle classification problems,
including classifications of illnesses or to estimate prognosis. Before machine
learningis applied for diagnosis, it must be trained first. The research methodology
which isdetermines differentofmachine learning algorithms,such as Random tree,
ID3, CART, SMO, C4.5 and Naive Bayesto finds the best training algorithm result.
The contribution of this research is test the data set with mis
This paper provides an attempt for modeling rate of penetration (ROP) for an Iraqi oil field with aid of mud logging data. Data of Umm Radhuma formation was selected for this modeling. These data include weight on bit, rotary speed, flow rate and mud density. A statistical approach was applied on these data for improving rate of penetration modeling. As result, an empirical linear ROP model has been developed with good fitness when compared with actual data. Also, a nonlinear regression analysis of different forms was attempted, and the results showed that the power model has good predicting capability with respect to other forms.
Breast cancer (BC) is the most common malignant tumor in women and the leading cause of cancer deaths worldwide. This work was conducted to estimate the roles of oxidative stress, vitamin B12, homocysteine (HCY), and DNA methylation in BC disease progression. Sixty BC patients (age range 33–80 years) and 30 healthy controls were recruited for this study. Patients with BC were split to group 1 consisted of stage II BC women (low level), and group 2 consisted of patients in stages III and IV (high level). Malondialdehyde (MDA), glutathione peroxidase 3 (GPX3), HCY, and vitamin B12 levels in the study groups were measured. Also, the 5-methylcytosine (5mC) global DNA methylation levels were evaluated. The results showed a significant
... Show MoreLetrozole (LZL) is a non-steroidal competitive aromatase enzyme system inhibitor. The aim of this study is to improve the permeation of LZL through the skin by preparing as nanoemulsion using various numbers of oils, surfactants and co-surfactant with deionized water. Based on solubility studies, mixtures of oleic acid oil and tween 80/ transcutol p as surfactant/co-surfactant (Smix) in different percentages were used to prepare nanoemulsions (NS). Therefore, 9 formulae of (o/w) LZL NS were formulated, then pseudo-ternary phase diagram was used as a useful tool to evaluate the NS domain at Smix ratios: 1:1, 2:1 and 3:1.
Background: The events in pregnancy elicit one of the best examples of selective anatomical, physiological and biochemical adaptations, with profound changes in respiratory physiology. The changes in respiratory physiology are due to increased size of the fetus with advance gestation which constitutes a mechanical impediment to normal process of ventilation.
.Patients and methods: This study started from the 1st of Nov. 2009 till the 30th of Oct. 2010. pregnant women aged (16-44 years) of different weight, height and different conception from 1st, 2nd, 3rd trimester and post term were included. Spirometry was performed in Baghdad teaching hospital( pulmonary fun
... Show MoreAbstract: E2F6 is a member of the E2F family of transcription factors involved in regulation of a wide variety of genes through both activation and repression. E2F6 has been reported as overexpressed in breast cancers but whether or not this is important for tumor development is unclear. We first checked E2F6 expression in tumor cDNAs and the protein level in a range of breast cancer cell lines. RNA interference-mediated depletion was then used to assess the importance of E2F6 expression in cell lines with regard to cell cycle profile using fluorescence-activated cell sorting and a cell survival assay using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The overexpression of E2F6 was confirmed in breast tumor cDNA samp
... Show MoreBACKGROUND: Breast cancer remains the most common malignancy among the Iraqi population. Affected patients exhibit different clinical behaviours according to the molecular subtypes of the tumour. AIM: To identify the clinical and pathological presentations of the Iraqi breast cancer subtypes identified by Estrogen receptors (ER), Progesterone receptors (PR) and HER2 expressions. PATIENTS AND METHODS: The present study comprised 486 Iraqi female patients diagnosed with breast cancer. ER, PR and HER2 contents of the primary tumours were assessed through immunohistochemical staining; classifying the patients into five different groups: Triple Negative (ER/PR negative/HER2 negative), Triple Positive (ER/PR positive/HER2 positive), Luminal A (ER
... Show More