Thin a-:H films were grown successfully by fabrication of designated ingot followed by evaporation onto glass slides. A range of growth conditions, Ge contents, dopant concentration (Al and As), and substrate temperature, were employed. Stoichiometry of the thin films composition was confirmed using standard surface techniques. The structure of all films was amorphous. Film composition and deposition parameters were investigated for their bearing on film electrical and optical properties. More than one transport mechanism is indicated. It was observed that increasing substrate temperature, Ge contents, and dopant concentration lead to a decrease in the optical energy gap of those films. The role of the deposition conditions on values of the optical constants was determined. Accordingly, models of the density of states for the :H thin films as pure, doped with 3.5% of Al (p-type) and that doped with 3.5% As (n-type), were proposed.
Antibiotic resistance has been a growing worldwide public health issue. The World Health Organization (WHO) has stated that the search for new antibiotics is slow, while antibiotic resistance is growing. WHO has also declared that antibiotic resistance is one of the top 10 global public health threats facing humanity in the 21st century. Therefore, this review discusses the potential of metal-based drugs as antibacterial agents from the period of the early 2000s to date. The review reveals that a lot of preliminary work has been done to assess these as potential drugs. However, their mode of action is faintly described. Furthermore, a few examples of metal-based drugs assessed for their modes of action are described. These compounds are ide
... Show MoreThe computer vision branch of the artificial intelligence field is concerned with
developing algorithms for analyzing image content. Data may be compressed by
reducing the redundancy in the original data, but this makes the data have more
errors. In this paper image compression based on a new method that has been
created for image compression which is called Five Modulus Method (FMM). The
new method consists of converting each pixel value in an (4x4, 8×8,16x16) block
into a multiple of 5 for each of the R, G and B arrays. After that, the new values
could be divided by 5 to get new values which are 6-bit length for each pixel and it
is less in storage space than the original value which is 8-bits.
In this work chemical vapor deposition method (CVD) for the production of carbon nanotubes (CNTs) have been improved by the addition of S. Steel mesh container (SSMC) inside which the catalyst (Fe/Al2O3) was placed. Scanning electron microscopy (SEM) investigation method used to study nanotubes produced, showed that high yield of two types of (CNTs) obtained, single wall carbon nanotube (SWCNTs) with diameter and length of less than 50nm and several micrometers respectively and nanocoil tubes with a diameter and length of less than 100nm and several micrometers respectively. The chemical analysis of (CNTs) reveals that the main component is carbon (94%) and a little amount of Al (0.32%), Fe (2.22%) the reminder is oxygen. It was also fou
... Show MoreThe work was carried out in two stages. The first stage concerned
with study of silicon carbide (SiC) ratio (1.5, 2.5, 3.5, and 4.5 wt%)
effect on the Thermal conductivity of polyvinyl chloride (PVC); and
the second stage concerned with the UV – weatherizing (25, 50, and
75 hr), thermal aging (40, 50, and 60 °C), and rain- weatherizing (1,
2.5, and 4 hr) effect on the samples involved. Thermal conductivity
results proved that there was slight increase in thermal conductivity
by (SiC) loading; it increased from 0.17 W/m.K for PVC to 0.19
W/m.K for 4.5% SiC/PVC; where as it was systematically decreased
by UV- weatherizing, thermal aging, and rain- weatherizing. This
property is in a good agreement with gene
Phase change materials are known to be good in use in latent heat thermal energy storage (LHTES) systems, but one of their drawbacks is the slow melting and solidification processes. So that, in this work, enhancing heat transfer of phase change material is studied experimentally for in charging and discharging processes by the addition of high thermal conductive material such as copper in the form of brushes, which were added in both PCM and air sides. The additions of brushes have been carried out with different void fractions (97%, 94% and 90%) and the effect of four different air velocities was tested. The results indicate that the minimum brush void fraction gave the maximum heat transfer in PCM and reduced the time
... Show MoreThe effect of fiber volume fraction of the carbon fiber on the thermal conductivity of the polymer composite material was studied. Different percentages of carbon fibers were used (5%, 10%, 15%, 20%, and 25%). Specimens were made in two groups for unsaturated polyester as a matrix and carbon fibers, first group has parallel arrangement of fibers and the second group has perpendicular arrangement of fibers on the thermal flow, Lee's disk method was used for testing the specimens. This study showed that the values of the of thermal conductivity of the specimens when the fibers arranged in parallel direction was higher than that when the fibers arranged in the perpendicular direction
 
... Show MoreA numerical simulation is made on the thermal lensing effect in an laser diode end-pumped Nd:YAG laser rod. Based on finite element method (FEM), the laser rod temperature distribution is calculated and the focal length is deduced for a Gaussian and super-Gaussian pump beam profiles.
At the pump power of 20W, the highest temperature located at the center of end-pumped face was 345K, and the thermal lens focal length was 81.4mm along the x-z axis.
The results indicate that the thermal lensing effect sensitively depend on the pump power, waist radius of the pump beam and the pump distribution in a laser rod geometry.
In this research, a type of gram negative bacteria was exposed to non-thermal plasma at a distance of (2 and 3 cm) from the plasma flow nozzle, with the use of an alternating power supply (5KHz), where exposure was made at two different voltages (4.9 and 8 kV). A negative gram of Pseudomonas aeruginosa bacteria was isolated and exposed to non-thermal plasma at different flow rates of argon gas whose value ranged from (1-5) liters/minute. The results showed that bacterial killing rate is directly proportional to distance while exposing the samples to non-thermal plasma, and the best factors by which a complete killing rate was obtained were at a distance of 2 cm with a voltage of 8 kV and a gas flow rate of 5 liters/min,
... Show More