Segmentation is the process of partition digital images into different parts depending on texture, color, or intensity, and can be used in different fields in order to segment and isolate the area to be partitioned. In this work images of the Moon obtained through observations in Astronomy and space dep. College of science university of Baghdad by ( Toward space telescopes and widespread used of a CCD camera) . Different segmentation methods were used to segment lunar craters. Different celestial objects cause craters when they crash into the surface of the Moon like asteroids and meteorites. Thousands of craters appears on the Moon's surface with ranges in size from meter to many kilometers, it provide insights into the age and geology of a Moon's surface. Therefore, it is important to study them and determine their characteristics. So, several segmentations methods were used in this study these are: K-Means, Single Feed Forward Neural Network (SFFNN), and hybrid segmentation methods. K-Means method applied with different number of clusters (k), that were used to segment Moon images and isolate lunar craters, where k=1,2,3, and 4 were used. But, all of them did not identify the boundary of craters, only K=3 gave useful results. SFFNN was also used in this work, it trained by a novel method, where weights have been replaced by masks, that create depending on the images features and targets. Thirteen lunar craters were used, ten of them utilized in training process and the last three images were used to test the performance of network. But also this method did not segment lunar images and identify the boundaries of lunar craters clearly. So, in attempt to overcome this problem, the new hybrid method was proposed, that combine the concepts of K Means and SFFNN methods. The main advantages of the proposed hybrid method is that it does not require much data in the training process as it is known in other networks, where the K-Means cluster segmentation method gave a shortcut to correlating masks with images, which led to giving perfect results in a short time. Then, results show the proposed hybrid segmentation method was succeed to segment lunar crater and identify the craters boundaries clearly.
Described the Arabic language being of genius sets by top models of eloquence , rhetoric and clarity of sounds and developments Moreover , it is an important element of our existence and our identity and our survival . That my methods and best in teaching Arabic language what has pursued the easiest ways to learning and teaching and helped learners to be aware of the function linguistic information , and they need it and its impact on their lives , and contributed to unleashing the potential of activism and led them to make the effort to apply them in the form of examples and uses of new life , as well as fits are the capabilities and tendencies of different learners , so the goal of current research into the importance of the curriculum
... Show MoreChlamydia trachomatis is the most common of negative gram bacteria that cause sexually transmitted diseases. It affects the reproductive system in women, not the symptoms of the disease, but the most serious is the long-term effects of the reproductive system.. out of 100 women were attending different hospitals in Baghdad included the Gynaecology Departments of Women Health Center at Al-Elwyia Obstetrics Hospital . Ibn Al balady Maternity and Children's Hospital , Kamal al-Samarrai hospital Fertility Center infertility treatment and In Vitro Fertilization ( IVF ) (20 control and 80 women with infertility) DNA was extracted from the Endocervical Swabs of all infertili women, to investigate the bacteria by using Real time -PCR technique a
... Show MoreDapagliflozin is a novel sodium-glucose cotransporter type 2 inhibitor. This work aims to develop a new
validated sensitive RP-HPLC coupled with a mass detector method for the determination of dapagliflozin, its
alpha isomer, and starting material in the presence of dapagliflozin major degradation products and an internal
standard (empagliflozin). The separation was achieved on BDS Hypersil column (length of 250mm, internal
diameter of 4.6 mm and 5-μm particle size) at a temperature of 35℃. Water and acetonitrile were used as
mobile phase A and B by gradient mode at a flow rate of 1 mL/min. A wavelength of 224nm was selected to
perform detection using a photo diode array detector. The method met the
This paper presents a method to classify colored textural images of skin tissues. Since medical images havehighly heterogeneity, the development of reliable skin-cancer detection process is difficult, and a mono fractaldimension is not sufficient to classify images of this nature. A multifractal-based feature vectors are suggested hereas an alternative and more effective tool. At the same time multiple color channels are used to get more descriptivefeatures.Two multifractal based set of features are suggested here. The first set measures the local roughness property, whilethe second set measure the local contrast property.A combination of all the extracted features from the three colormodels gives a highest classification accuracy with 99.4
... Show MoreThe combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet networks are feed-forward neural networks using wavelets as activation function. Wavelets networks have been used in classification and identification problems with some success.
In this work we proposed a fuzzy wavenet network (FWN), which learns by common back-propagation algorithm to classify medical images. The library of medical image has been analyzed, first. Second, Two experimental tables’ rules provide an excellent opportunity to test the ability of fuzzy wavenet network due to the high level of information variability often experienced with this type of images.
&n
... Show MoreAs result of exposure in low light-level are images with only a small number of
photons. Only the pixels in which arrive the photopulse have an intensity value
different from zero. This paper presents an easy and fast procedure for simulating
low light-level images by taking a standard well illuminated image as a reference.
The images so obtained are composed by a few illuminated pixels on a dark
background. When the number of illuminated pixels is less than 0.01% of the total
pixels number it is difficult to identify the original object.
Alzheimer’s Disease (AD) is the most prevailing type of dementia. The prevalence of AD is estimated to be around 5% after 65 years old and is staggering 30% for more than 85 years old in developed countries. AD destroys brain cells causing people to lose their memory, mental functions and ability to continue daily activities. The findings of this study are likely to aid specialists in their decision-making process by using patients’ Magnetic Resonance Imaging (MRI) to distinguish patients with AD from Normal Control (NC). Performance evolution was applied to 346 Magnetic Resonance images from the Alzheimer's Neuroimaging Initiative (ADNI) collection. The Deep Belief Network (DBN) classifier was used to fulfill classification f
... Show MoreThe detection and estimation of weathering conditions have become a very important daily necessity in our life. For this purpose, several satellites of low resolution imagery were launched by the weathering and environmental agencies. The important weather paremeters are temperuter, wind direction, velocity, clould and humidity, etc. The low resolution images often deal with large-scale phenomena and the interpretation and projection of the produced data requires continuous development of tools and criteria. In this paper, the low spatial resolution data generated by the moderate resolution imaging spectroradiometer (MODIS) were used to monitor the cloud density and direction above Iraq and i
... Show MorePrinted Arabic document image retrieval is a very important and needed system for many companies, governments and various users. In this paper, a printed Arabic document images retrieval system based on spotting the header words of official Arabic documents is proposed. The proposed system uses an efficient segmentation, preprocessing methods and an accurate proposed feature extraction method in order to prepare the document for classification process. Besides that, Support Vector Machine (SVM) is used for classification. The experiments show the system achieved best results of accuracy that is 96.8% by using polynomial kernel of SVM classifier.