Segmentation is the process of partition digital images into different parts depending on texture, color, or intensity, and can be used in different fields in order to segment and isolate the area to be partitioned. In this work images of the Moon obtained through observations in Astronomy and space dep. College of science university of Baghdad by ( Toward space telescopes and widespread used of a CCD camera) . Different segmentation methods were used to segment lunar craters. Different celestial objects cause craters when they crash into the surface of the Moon like asteroids and meteorites. Thousands of craters appears on the Moon's surface with ranges in size from meter to many kilometers, it provide insights into the age and geology of a Moon's surface. Therefore, it is important to study them and determine their characteristics. So, several segmentations methods were used in this study these are: K-Means, Single Feed Forward Neural Network (SFFNN), and hybrid segmentation methods. K-Means method applied with different number of clusters (k), that were used to segment Moon images and isolate lunar craters, where k=1,2,3, and 4 were used. But, all of them did not identify the boundary of craters, only K=3 gave useful results. SFFNN was also used in this work, it trained by a novel method, where weights have been replaced by masks, that create depending on the images features and targets. Thirteen lunar craters were used, ten of them utilized in training process and the last three images were used to test the performance of network. But also this method did not segment lunar images and identify the boundaries of lunar craters clearly. So, in attempt to overcome this problem, the new hybrid method was proposed, that combine the concepts of K Means and SFFNN methods. The main advantages of the proposed hybrid method is that it does not require much data in the training process as it is known in other networks, where the K-Means cluster segmentation method gave a shortcut to correlating masks with images, which led to giving perfect results in a short time. Then, results show the proposed hybrid segmentation method was succeed to segment lunar crater and identify the craters boundaries clearly.
This paper suggest two method of recognition, these methods depend on the extraction of the feature of the principle component analysis when applied on the wavelet domain(multi-wavelet). First method, an idea of increasing the space of recognition, through calculating the eigenstructure of the diagonal sub-image details at five depths of wavelet transform is introduced. The effective eigen range selected here represent the base for image recognition. In second method, an idea of obtaining invariant wavelet space at all projections is presented. A new recursive from that represents invariant space of representing any image resolutions obtained from wavelet transform is adopted. In this way, all the major problems that effect the image and
... Show MoreThis work describes two efficient and useful methods for solving fractional pantograph delay equations (FPDEs) with initial and boundary conditions. These two methods depend mainly on orthogonal polynomials, which are the method of the operational matrix of fractional derivative that depends on Bernstein polynomials and the operational matrix of the fractional derivative with Shifted Legendre polynomials. The basic procedure of this method is to convert the pantograph delay equation to a system of linear equations and by using, the operational matrices we get rid of the integration and differentiation operations, which makes solving the problem easier. The concept of Caputo has been used to describe fractional derivatives. Finally, some
... Show MoreGreen nanotechnology is a thrilling and rising place of technology and generation that bracesthe ideas of inexperienced chemistry with ability advantages for sustainability, protection, andthe general protection from the race human. The inexperienced chemistry method introduces aproper technique for the production, processing, and alertness of much less dangerous chemicalsubstances to lessen threats to human fitness and the environment. The technique calls for inintensity expertise of the uncooked materials, particularly in phrases in their creation intonanomaterials and the resultant bioactivities that pose very few dangerous outcomes for peopleand the environment. In the twenty-first century, nanotechnology has become a systematic
... Show MoreThis paper presents thermal characteristics analysis of a modified Closed Wet Cooling Tower (CWCT) based on heat and mass transfer principles to improve the performance of this tower in Iraq. A prototype of CWCT optimized by added packing was designed, manufactured and tested for cooling capacity of 9 kW. Experiments are conducted to explore the effects of various operational and conformational parameters on the thermal performance. In the test section, spray water temperature and both dry bulb temperature and relative humidity of the air measured at intermediate points of the heat exchanger and packing. Heat exchangers consist of four rows and eight columns for an inline tubes arrangement and six rows and five columns f
... Show MoreBy using governing differential equation and the Rayleigh-Ritz method of minimizing the total potential energy of a thermoelastic structural system of isotropic thermoelastic thin plates, thermal buckling equations were established for rectangular plate with different fixing edge conditions and with different aspect ratio. The strain energy stored in a plate element due to bending, mid-plane thermal force and thermal bending was obtained. Three types of thermal distribution have been considered these are: uniform temperature, linear distribution and non-linear thermal distribution across thickness. It is observed that the buckling strength enhanced considerably by additional clamping of edges. Also, the thermal buckling temperatures and
... Show MoreMany of the proposed methods introduce the perforated fin with the straight direction to improve the thermal performance of the heat sink. The innovative form of the perforated fin (with inclination angles) was considered. Present rectangular pin fins consist of elliptical perforations with two models and two cases. The signum function is used for modeling the opposite and the mutable approach of the heat transfer area. To find the general solution, the degenerate hypergeometric equation was used as a new derivative method and then solved by Kummer's series. Two validation methods (previous work and Ansys 16.0‐Steady State Thermal) are considered. The strong agreement of the validation results (0.3
Green nanotechnology is a thrilling and rising place of technology and generation that braces
the ideas of inexperienced chemistry with ability advantages for sustainability, protection, and
the general protection from the race human. The inexperienced chemistry method introduces a
proper technique for the production, processing, and alertness of much less dangerous chemical
substances to lessen threats to human fitness and the environment. The technique calls for inintensity expertise of the uncooked materials, particularly in phrases in their creation into
nanomaterials and the resultant bioactivities that pose very few dangerous outcomes for people
and the environment. In the twenty-first century, nanotec
Sensing insole systems are a promising technology for various applications in healthcare and sports. They can provide valuable information about the foot pressure distribution and gait patterns of different individuals. However, designing and implementing such systems poses several challenges, such as sensor selection, calibration, data processing, and interpretation. This paper proposes a sensing insole system that uses force-sensitive resistors (FSRs) to measure the pressure exerted by the foot on different regions of the insole. This system classifies four types of foot deformities: normal, flat, over-pronation, and excessive supination. The classification stage uses the differential values of pressure points as input for a feedforwar
... Show More