Preferred Language
Articles
/
shf8sZMBVTCNdQwC7uks
REVIEW: USING MACHINE VISION AND DEEP LEARINING IN AUTOMATED SORTING OF LOCAL LEMONS
...Show More Authors

Sorting and grading agricultural crops using manual sorting is a cumbersome and arduous process, in addition to the high costs and increased labor, as well as the low quality of sorting and grading compared to automatic sorting. the importance of deep learning, which includes the artificial neural network in prediction, also shows the importance of automated sorting in terms of efficiency, quality, and accuracy of sorting and grading. artificial neural network in predicting values and choosing what is good and suitable for agricultural crops, especially local lemons.

Publication Date
Wed Nov 05 2025
Journal Name
Irrigation And Drainage
Predicting Potential Salinity in River Water for Irrigation Water Purposes Using Integrative Machine Learning Models
...Show More Authors
ABSTRACT<p>Accurate prediction of river water quality parameters is essential for environmental protection and sustainable agricultural resource management. This study presents a novel framework for estimating potential salinity in river water in arid and semi‐arid regions by integrating a kernel extreme learning machine (KELM) with a boosted salp swarm algorithm based on differential evolution (KELM‐BSSADE). A dataset of 336 samples, including bicarbonate, calcium, pH, total dissolved solids and sodium adsorption ratio, was collected from the Idenak station in Iran and was used for the modelling. Results demonstrated that KELM‐BSSADE outperformed models such as deep random vector funct</p> ... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Keratoconus Severity Detection From Elevation, Topography and Pachymetry Raw Data Using a Machine Learning Approach
...Show More Authors

View Publication
Scopus (23)
Crossref (22)
Scopus Clarivate Crossref
Publication Date
Sun Sep 03 2023
Journal Name
Wireless Personal Communications
Application of Healthcare Management Technologies for COVID-19 Pandemic Using Internet of Things and Machine Learning Algorithms
...Show More Authors

View Publication
Scopus (8)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Tue Jan 05 2016
Journal Name
Iraqi Journal Of Science
Local Study of blaCTX-M genes detection in Proteus spp. by using PCR technique
...Show More Authors

n this study, 25 clinical isolates of Proteus spp. were collected from urine, wounds and burns specimens from different hospitals in Baghdad city, all isolates were identified by using different bacteriological media, biochemical assays and Vitek-2 system. It was found that 15 (60%) isolates were identifies as Proteus mirabilis and 10 (40 %) isolates were Proteus vulgaris. The susceptibility of P. mirabilis and P. vulgaris isolates towards cefotaxime was (66.6 %) and (44.4 %) respectively; while the susceptibility of P. mirabilis and P. vulgaris isolates towards ceftazidime was (20%). Extended spectrum β-lactamses producing Proteus was (30.7 %). DNA of 10 isolates of P. mirabilis and 4 isolates of P. vulgaris were extracted and de

... Show More
Publication Date
Thu Jan 01 2015
Journal Name
Energy Sources, Part A: Recovery, Utilization, And Environmental Effects
Ultra Deep Hydrotreatment of Iraqi Vacuum Gas Oil Using a Modified Catalyst
...Show More Authors

A set of hydro treating experiments are carried out on vacuum gas oil in a trickle bed reactor to study the hydrodesulfurization and hydrodenitrogenation based on two model compounds, carbazole (non-basic nitrogen compound) and acridine (basic nitrogen compound), which are added at 0–200 ppm to the tested oil, and dibenzotiophene is used as a sulfur model compound at 3,000 ppm over commercial CoMo/ Al2O3 and prepared PtMo/Al2O3. The impregnation method is used to prepare (0.5% Pt) PtMo/Al2O3. The basic sites are found to be very small, and the two catalysts exhibit good metal support interaction. In the absence of nitrogen compounds over the tested catalysts in the trickle bed reactor at temperatures of 523 to 573 K, liquid hourly space v

... Show More
Publication Date
Wed Jun 16 2021
Journal Name
Cognitive Computation
Deep Transfer Learning for Improved Detection of Keratoconus using Corneal Topographic Maps
...Show More Authors
Abstract <p>Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b</p> ... Show More
View Publication
Scopus (44)
Crossref (34)
Scopus Clarivate Crossref
Publication Date
Sun Mar 29 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Dissolving Precipitated Asphaltenes Inside Oil Reservoirs Using Local Solvents
...Show More Authors

There are several oil reservoirs that had severe from a sudden or gradual decline in their production due to asphaltene precipitation inside these reservoirs. Asphaltene deposition inside oil reservoirs causes damage for permeability and skin factor, wettability alteration of a reservoir, greater drawdown pressure. These adverse changing lead to flow rate reduction, so the economic profit will drop. The aim of this study is using local solvents: reformate, heavy-naphtha and binary of them for dissolving precipitated asphaltene inside the oil reservoir. Three samples of the sand pack had been prepared and mixed with a certain amount of asphaltene. Permeability of these samples calculated before and after mixed with asphaltenes. Then, the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Bio Web Of Conferences
Concepts of statistical learning and classification in machine learning: An overview
...Show More Authors

Statistical learning theory serves as the foundational bedrock of Machine learning (ML), which in turn represents the backbone of artificial intelligence, ushering in innovative solutions for real-world challenges. Its origins can be linked to the point where statistics and the field of computing meet, evolving into a distinct scientific discipline. Machine learning can be distinguished by its fundamental branches, encompassing supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. Within this tapestry, supervised learning takes center stage, divided in two fundamental forms: classification and regression. Regression is tailored for continuous outcomes, while classification specializes in c

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Wed Sep 11 2019
Journal Name
Journal Of Mechanical Engineering Research And Developments
INDUSTRIAL TRACKING CAMERA AND PRODUCT VISION DETECTION SYSTEM
...Show More Authors

View Publication
Scopus (7)
Crossref (3)
Scopus Crossref
Publication Date
Thu Jan 14 2021
Journal Name
مكتب نور الحسن للنشر والتوزيع
Practical Education and Field Application: A Methodological Vision"
...Show More Authors

Preview PDF