<abstract><p>Many variations of the algebraic Riccati equation (ARE) have been used to study nonlinear system stability in the control domain in great detail. Taking the quaternion nonsymmetric ARE (QNARE) as a generalized version of ARE, the time-varying QNARE (TQNARE) is introduced. This brings us to the main objective of this work: finding the TQNARE solution. The zeroing neural network (ZNN) technique, which has demonstrated a high degree of effectiveness in handling time-varying problems, is used to do this. Specifically, the TQNARE can be solved using the high order ZNN (HZNN) design, which is a member of the family of ZNN models that correlate to hyperpower iterative techniques. As a result, a novel
... Show MoreIts well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.
Precision is one of the main elements that control the quality of a geodetic network, which defines as the measure of the network efficiency in propagation of random errors. This research aims to solve ZOD and FOD problems for a geodetic network using Rosenbrock Method to optimize the geodetic networks by using MATLAB programming language, to find the optimal design of geodetic network with high precision. ZOD problem was applied to a case study network consists of 19 points and 58 designed distances with a priori deviation equal to 5mm, to determine the best points in the network to consider as control points. The results showed that P55 and P73 having the minimum ellipse of error and considered as control points. FOD problem was applie
... Show MoreAnomaly detection is still a difficult task. To address this problem, we propose to strengthen DBSCAN algorithm for the data by converting all data to the graph concept frame (CFG). As is well known that the work DBSCAN method used to compile the data set belong to the same species in a while it will be considered in the external behavior of the cluster as a noise or anomalies. It can detect anomalies by DBSCAN algorithm can detect abnormal points that are far from certain set threshold (extremism). However, the abnormalities are not those cases, abnormal and unusual or far from a specific group, There is a type of data that is do not happen repeatedly, but are considered abnormal for the group of known. The analysis showed DBSCAN using the
... Show MoreThe self-evident truth existing in today's business environment is the continuity of change and its continuity and turmoil, also its increase over time as it is more abundant, abundant, wide and complex than ever before, and it is the dominant feature in the business environment, as different organizations and operating units can find themselves shifting from the top to the bottom. And then it requires its departments to strive to adapt to these rapid and turbulent shifts and changes by bringing about a series of organizational and adaptive changes that are not limited to one organizational aspect only but rather include all organizational components. Accordingly, this research came to determine the readiness of public organizations to chan
... Show MoreThe past decades of the last century and until now have witnessed many crises in the housing sector, and these crises were the result of many problems that led to a weak quality and quantity of housing stock, especially for lowincome people, and Goal 11 of the Sustainable Development Goals states, "Make cities and human settlements inclusive, safe, and capable of enduring and being sustainable, we have prepared this research that attempts to answer the following question: Is the current empowerment in the housing sector real and efficient support for people with limited income? The research assumes that empowerment in the housing sector has an important and effective role in reducing housing problems, the research aims to reach the most imp
... Show MoreThe permeability estimates for the uncored wells and a porosity function adopting a modified flow zone index-permeability crossplot are given in this work. The issues with implementing that approach were mostly crossplots, due to the influence of geological heterogeneity, did not show a clear connection (scatter data). Carbonate reservoir flow units may now be identified and characterized using a new approach, which has been formally confirmed. Due to the comparable distribution and flow of clastic and carbonate rock fluids, this zoning method is most effective for reservoirs with significant primary and secondary porosity. The equations and correlations here are more generalizable since they connect these variables by combining cor
... Show MorePrecise forecasting of pore pressures is crucial for efficiently planning and drilling oil and gas wells. It reduces expenses and saves time while preventing drilling complications. Since direct measurement of pore pressure in wellbores is costly and time-intensive, the ability to estimate it using empirical or machine learning models is beneficial. The present study aims to predict pore pressure using artificial neural network. The building and testing of artificial neural network are based on the data from five oil fields and several formations. The artificial neural network model is built using a measured dataset consisting of 77 data points of Pore pressure obtained from the modular formation dynamics tester. The input variables
... Show MoreIn this golden age of rapid development surgeons realized that AI could contribute to healthcare in all aspects, especially in surgery. The aim of the study will incorporate the use of Convolutional Neural Network and Constrained Local Models (CNN-CLM) which can make improvement for the assessment of Laparoscopic Cholecystectomy (LC) surgery not only bring opportunities for surgery but also bring challenges on the way forward by using the edge cutting technology. The problem with the current method of surgery is the lack of safety and specific complications and problems associated with safety in each laparoscopic cholecystectomy procedure. When CLM is utilize into CNN models, it is effective at predicting time series tasks like iden
... Show More