Around 65 million individuals suffer from epilepsy worldwide, and when it is not properly treated, it is linked to higher rates of physical harm and mortality. Due to the requirement for long‐term therapy and the side effects of many medications, medication compliance is a significant issue. The purpose of this review was to summarize the findings of previous studies examining the quality of life (QOL), adherence, patient education, and medication knowledge, as well as the impact of a pharmacist‐led educational intervention. Additionally, to find out if these studies benefit epileptic patients, to find the appropriate method used to help them in all aspects of their lives, and to use these in future studies. A systematic and comprehensive search was conducted using specific keywords from PubMed, Google Scholar, and Research Gate. A significantly poorer QOL was linked to prolonged antiepileptic drug use or poor adherence as well as psychiatric problems. Neglect was the most frequent reason for nonadherence. The frequency of seizures was greatly reduced, and the adherence was significantly increased by patient education and medication understanding. Patient awareness, adherence, QOL, and seizure frequency were dramatically improved following the intervention. In the absence of optimal treatment, epilepsy is associated with increased rates of bodily injuries and mortality. It is crucial to increase patient education and knowledge about disease and treatment in order to improve adherence, and QOL. Intervention by a chemist is required to achieve these results.
The physician's commitment to medical insight is affected by several factors that vary from patient to patient in terms of the nature of the disease, the severity of the disease, the age of the patient, and the purpose of undergoing medical intervention. There are circumstances surrounding patients that require the physician to reduce the insight towards them, by concealing medical information. The physician must firmly commit to expanding the scope of his vision to a wider extent than in normal medical work. Therefore, we will discuss in this regard the cases in which medical explanation is reduced and the cases that require confirmation in the following order.
Several Intrusion Detection Systems (IDS) have been proposed in the current decade. Most datasets which associate with intrusion detection dataset suffer from an imbalance class problem. This problem limits the performance of classifier for minority classes. This paper has presented a novel class imbalance processing technology for large scale multiclass dataset, referred to as BMCD. Our algorithm is based on adapting the Synthetic Minority Over-Sampling Technique (SMOTE) with multiclass dataset to improve the detection rate of minority classes while ensuring efficiency. In this work we have been combined five individual CICIDS2017 dataset to create one multiclass dataset which contains several types of attacks. To prove the eff
... Show MoreSummaryBackground: Rotavirus infection is the most commoncause of watery viral diarrhea in children younger than 5 years of age; it is a major cause of childhood morbidity and mortality.Objective:The aim of the study is todetermine the clinical picture, age distribution of patients with rotavirus infection and their maternal educational background.Patients &methods: A total of 202 patients suffering from diarrhea were included in this study, over 6 months period( from 1stof March 2011to 30th of August 2011),in Children Welfare Teaching hospital. History and physical examinationwere carried out, anthropometrics measures were done and plotted on Centers for Disease Control& World Health Organization charts to determine the nut
... Show MoreIn this paper, some commonly used hierarchical cluster techniques have been compared. A comparison was made between the agglomerative hierarchical clustering technique and the k-means technique, which includes the k-mean technique, the variant K-means technique, and the bisecting K-means, although the hierarchical cluster technique is considered to be one of the best clustering methods. It has a limited usage due to the time complexity. The results, which are calculated based on the analysis of the characteristics of the cluster algorithms and the nature of the data, showed that the bisecting K-means technique is the best compared to the rest of the other methods used.
Maxillofacial trauma in females is not widely reported. This study aimed to analyze the clinical characteristics and the patterns of maxillofacial injuries in females and to determine the differences in these patterns among different causes. This retrospective study analyzed several variables, including demographic, social, injury-related, and treatment-related variables, and compared these variables in relation to the main etiologies of maxillofacial trauma. The main etiologies of maxillofacial injuries involving females were assault, followed by road traffic accidents, and falls. There were significant differences in relation to the 3 etiologies in age groups (
Debate is a teaching strategy in nursing education that enhances students' critical thinking. Although debate can be an effective teaching strategy, it is not without limitations. This article discusses the advantages and disadvantages of debate as a teaching strategy in nursing. Also, evaluating debates and choosing topics are highlighted.
In this study, we have created a new Arabic dataset annotated according to Ekman’s basic emotions (Anger, Disgust, Fear, Happiness, Sadness and Surprise). This dataset is composed from Facebook posts written in the Iraqi dialect. We evaluated the quality of this dataset using four external judges which resulted in an average inter-annotation agreement of 0.751. Then we explored six different supervised machine learning methods to test the new dataset. We used Weka standard classifiers ZeroR, J48, Naïve Bayes, Multinomial Naïve Bayes for Text, and SMO. We also used a further compression-based classifier called PPM not included in Weka. Our study reveals that the PPM classifier significantly outperforms other classifiers such as SVM and N
... Show More