The effluent quality improvement being discharged from wastewater treatment plants is essential to maintain an environment and healthy water resources. This study was carried out to evaluate the possibility of intermittent slow sand filtration as a promising tertiary treatment method for the sequencing batch reactor (SBR) effluent. Laboratory scale slow sand filter (SSF) of 1.5 UC and 0.1 m/h filtration rate, was used to study the process performance. It was found that SSF IS very efficient in oxidizing organic matter with COD removal efficiency up to 95%, also it is capable of removing considerable amounts of phosphate with 76% and turbidity with 87% removal efficiencies. Slow sand filter efficiently reduced the mass of suspended and dissolved material to a very high TSS and conductivity removal efficiency of about 99% for both of them. Therefore, it can be said that slow sand filtration would be a promising technology as a tertiary treatment of SBR reactor effluent, and economically achievable as a mean of upgrading wastewater effluents to meet more stringent water quality standards, where treated effluent can be reused for various recreational purposes i.e. gardening and irrigation, as well as for safe discharge.
The impact of a simple trailing-edge plain flap on the aerodynamics of the SD7037 airfoil have been studied in this paper using computational fluid dynamics at Reynolds number of 3×105 across various low angles of attack and flap deflection angles. The computational model was evaluated by using Star CCM+ software with κ--ω SST turbulence and gamma transition model to solve Navier-Stokes equations. The accuracy of the computational model has been confirmed through comparison with experimental data, showing a high level of agreement at low angles of attack. The findings revealed that specific combinations of angles of attack and flap deflection angles could increase the lift-to-drag ratio by over 70% compared to baseline conditions, benefi
... Show MoreThe use of composite materials has vastly increased in recent years. Great interest is therefore developed in the damage detection of composites using non- destructive test methods. Several approaches have been applied to obtain information about the existence and location of the faults. This paper used the vibration response of a composite plate to detect and localize delamination defect based on the modal analysis. Experiments are conducted to validate the developed model. A two-dimensional finite element model for multi-layered composites with internal delamination is established. FEM program are built for plates under different boundary conditions. Natural frequencies and modal displacements of the intact and damaged
... Show MoreThis study investigated the effect of applying an external magnetic field on the characteristics of laser-induced plasma, such as its parameters plasma, magnetization properties, emission line intensities, and plasma coefficients, for plasma induced from zinc oxide: aluminum composite (ZO:AL) at an atomic ratio of 0.3 %. Plasma properties include magnetization and emission line intensities. The excitation was done by a pulsed laser of Nd:YAG with 400 mJ energy at atmospheric pressure. Both the electron temperature and number density were determined with the help of the Stark effect principle and the Boltzmann-Plot method. There was a rise in the amount of (ne) and (Te) that was produced
... Show MoreLow incoming discharge upstream of Samarra-Al Tharthar System leads to sediment accumulation and forming islands, especially an island upstream of Al Tharthar Regulator. This island and the sedimentation threaten the stability of the structure and reduce the efficiency of the system. This study aims to hydraulically identify the sedimentation problem mentioned above, to find solutions of how to control the sediment problems, and to develop the capacity of
the system for 500 years return period flood of 15060 m3/s. Surface Water Modeling System (SMS10.1) with two dimensional depth average models (RMA-2) software were used to simulate and analyze the system. The results of analysis showed that the maximum permissible discharge through t
Objectives: To assess the psychological adjustment of middle school students and to identify the relationship between differences in demographic characteristics and psychological adjustment.
Methodology: A descriptive correlation design was used. The study utilized a simple random sample to select (381) students using self-report to select students who will be recruited into the study for the period from November 26th, 2021 to April 1st, 2022. A scale approved in the study consisting of 40 items was chosen. It measures four trends which are personal, social, familial, and emotional adjustment. The data were analyzed by applying the descriptive statistical dat
... Show MoreIn this paper, we will discuss the performance of Bayesian computational approaches for estimating the parameters of a Logistic Regression model. Markov Chain Monte Carlo (MCMC) algorithms was the base estimation procedure. We present two algorithms: Random Walk Metropolis (RWM) and Hamiltonian Monte Carlo (HMC). We also applied these approaches to a real data set.
in this paper, we give a concept of
This study deals with the estimation of critical load of unidirectional polymer matrix composite plates by using experimental and finite element techniques at different fiber angles and fiber volume fraction of the composite plate.
Buckling analysis illustrated that the critical load decreases in nonlinear relationship with the increase of the fiber angle and that it increases with the increase of the fiber volume fraction.
The results show that the maximum value of the critical load is (629.54 N/m) at (q = 0°) and (Vf = 40 %) for the finite element method, while the minimum val
... Show More