Regression Discontinuity (RD) means a study that exposes a definite group to the effect of a treatment. The uniqueness of this design lies in classifying the study population into two groups based on a specific threshold limit or regression point, and this point is determined in advance according to the terms of the study and its requirements. Thus , thinking was focused on finding a solution to the issue of workers retirement and trying to propose a scenario to attract the idea of granting an end-of-service reward to fill the gap ( discontinuity point) if it had not been granted. The regression discontinuity method has been used to study and to estimate the effect of the end -service reward on the cutoff of insured workers as well as the increase in revenues resulting from that. The research has showed that this reward has a clear effect on increasing revenues due to the regularity of workers in their work and their work continuity . It has also found that using Local Linear Smother (LLS) by using three models of bandwidth selection. Its results after the analysis in the Regression program have been as follows: The CCT (Calonico, Cattaneo & Titiunik) beamwidth gives the best performance followed by the local linear regression using the LK (Lembens and kalyanman) beamwidth. The real data has been used in sample size 71 represented in compensation as a variable of effectiveness (illustrative) X and the revenue as a result or an approved variable Y, while the results of the traditional OLS estimation method have not been good enough.
The concept of the Extend Nearly Pseudo Quasi-2-Absorbing submodules was recently introduced by Omar A. Abdullah and Haibat K. Mohammadali in 2022, where he studies this concept and it is relationship to previous generalizationsm especially 2-Absorbing submodule and Quasi-2-Absorbing submodule, in addition to studying the most important Propositions, charactarizations and Examples. Now in this research, which is considered a continuation of the definition that was presented earlier, which is the Extend Nearly Pseudo Quasi-2-Absorbing submodules, we have completed the study of this concept in multiplication modules. And the relationship between the Extend Nearly Pseudo Quasi-2-Absorbing submodule and Extend Nearly Pseudo Quasi-2-Abs
... Show MoreThis paper is specifically a detailed review of the Spatial Quantile Autoregressive (SARQR) model that refers to the incorporation of quantile regression models into spatial autoregressive models to facilitate an improved analysis of the characteristics of spatially dependent data. The relevance of SARQR is emphasized in most applications, including but not limited to the fields that might need the study of spatial variation and dependencies. In particular, it looks at literature dated from 1971 and 2024 and shows the extent to which SARQR had already been applied previously in other disciplines such as economics, real estate, environmental science, and epidemiology. Accordingly, evidence indicates SARQR has numerous benefits compar
... Show MoreThis paper develops a fuzzy multi-objective model for solving aggregate production planning problems that contain multiple products and multiple periods in uncertain environments. We seek to minimize total production cost and total labor cost. We adopted a new method that utilizes a Zimmermans approach to determine the tolerance and aspiration levels. The actual performance of an industrial company was used to prove the feasibility of the proposed model. The proposed model shows that the method is useful, generalizable, and can be applied to APP problems with other parameters.
Grey system theory is a multidisciplinary scientific approach, which deals with systems that have partially unknown information (small sample and uncertain information). Grey modeling as an important component of such theory gives successful results with limited amount of data. Grey Models are divided into two types; univariate and multivariate grey models. The univariate grey model with one order derivative equation GM (1,1) is the base stone of the theory, it is considered the time series prediction model but it doesn’t take the relative factors in account. The traditional multivariate grey models GM(1,M) takes those factor in account but it has a complex structure and some defects in " modeling mechanism", "parameter estimation "and "m
... Show MoreFuzzy numbers are used in various fields such as fuzzy process methods, decision control theory, problems involving decision making, and systematic reasoning. Fuzzy systems, including fuzzy set theory. In this paper, pentagonal fuzzy variables (PFV) are used to formulate linear programming problems (LPP). Here, we will concentrate on an approach to addressing these issues that uses the simplex technique (SM). Linear programming problems (LPP) and linear programming problems (LPP) with pentagonal fuzzy numbers (PFN) are the two basic categories into which we divide these issues. The focus of this paper is to find the optimal solution (OS) for LPP with PFN on the objective function (OF) and right-hand side. New ranking f
... Show MoreIn this work, we prove that the triple linear partial differential equations (PDEs) of elliptic type (TLEPDEs) with a given classical continuous boundary control vector (CCBCVr) has a unique "state" solution vector (SSV) by utilizing the Galerkin's method (GME). Also, we prove the existence of a classical continuous boundary optimal control vector (CCBOCVr) ruled by the TLEPDEs. We study the existence solution for the triple adjoint equations (TAJEs) related with the triple state equations (TSEs). The Fréchet derivative (FDe) for the objective function is derived. At the end we prove the necessary "conditions" theorem (NCTh) for optimality for the problem.
This Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters. Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. Many solved examples are intended in this book, in addition to a variety of unsolved relied pro
... Show MoreThis Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters. Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. Many solved examples are intended in this book, in addition to a variety of unsolved relied pro
... Show MoreMany of the key stream generators which are used in practice are LFSR-based in the sense that they produce the key stream according to a rule y = C(L(x)), where L(x) denotes an internal linear bit stream, produced by small number of parallel linear feedback shift registers (LFSRs), and C denotes some nonlinear compression function. In this paper we combine between the output sequences from the linear feedback shift registers with the sequences out from non linear key generator to get the final very strong key sequence