Significant advances in the automated glaucoma detection techniques have been made through the employment of the Machine Learning (ML) and Deep Learning (DL) methods, an overview of which will be provided in this paper. What sets the current literature review apart is its exclusive focus on the aforementioned techniques for glaucoma detection using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines for filtering the selected papers. To achieve this, an advanced search was conducted in the Scopus database, specifically looking for research papers published in 2023, with the keywords "glaucoma detection", "machine learning", and "deep learning". Among the multiple found papers, the ones focusing on ML and DL techniques were selected. The best performance metrics obtained using ML recorded in the reviewed papers, were for the SVM, which achieved accuracies of 98.31%, 98.61%, 96.43%, 96.67%, 95.24%, and 98.60% in the ACRIMA, REFUGE, RIM-ONE, ORIGA-light, DRISHTI-GS, and sjchoi86-HRF databases, respectively, employing the REFUGE-trained model, while when deploying the ACRIMA-trained model, it attained accuracies of 98.92%, 99.06%, 98.27%, 97.10%, 96.97%, and 96.36%, in the same databases, respectively. The best performance metrics obtained utilizing DL recorded in the reviewed papers, were for the lightweight CNN, with an accuracy of 99.67% in the Diabetic Retinopathy (DR) and 96.5% in the Glaucoma (GL) databases. In the context of non-healthy screening, CNN achieved an accuracy of 99.03% when distinguishing between GL and DR cases. Finally, the best performance metrics were obtained using ensemble learning methods, which achieved an accuracy of 100%, specificity of 100%, and sensitivity of 100%. The current review offers valuable insights for clinicians and summarizes the recent techniques used by the ML and DL for glaucoma detection, including algorithms, databases, and evaluation criteria.
The concept of narration has taken an aesthetic field farther than the primitive human act which was imposed by the necessities of social communication in an ancient historical period. The research addressed the research problem. The importance of the research lies in connecting the concept of narration with the theatre directing elements. The research aims at discovering the narration fields in the theatre directing represented by the perceived videos, audios and motions. The research time limit was (2014). The theoretical framework is divided into three chapters:
The first chapter (the concept of narration in literature and criticism), the second addressed
... Show MoreThe growing interest in the use of chaotic techniques for enabling secure communication in recent years has been motivated by the emergence of a number of wireless services which require the service provider to provide low bit error rates (BER) along with information security. This paper investigates the feasibility of using chaotic communications over Multiple-Input-Multiple-Output (MIMO) channels. While the use of Chaotic maps can enhance security, it is seen that the overall BER performance gets degraded when compared to conventional communication schemes. In order to overcome this limitation, we have proposed the use of a combination of Chaotic modulation and Alamouti Space Time Block Code. The performance of Chaos Shift Keying (CSK) wi
... Show MoreKidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati
The paper investigates the impact of role-playing as a classroom technique on Iraqi EFL students’ speaking skill on Iraqi EFL students at the college level. The students are 40 college language students in University of Baghdad, College of Education Ibn-Rushd randomly chosen. Then, they were divided into two groups, experimental and control groups. Thirty questions were applied to both groups as a pre-test of speaking and the students asked to answer them orally. The experimental group was taught speaking skill of the targeted role-play technique while the control group was taught in traditional method. After 20 lessons of the teaching, the post-test of speaking was conducted in which the students in both groups were asked to answ
... Show MoreThe objectives of this study were to review the literature covering the perceptions about influenza vaccines in the Middle East and to determine factors influencing the acceptance of vaccination using Health Belief Model (HBM).
A comprehensive literature search was performed utilizing PubMed and Google Scholar databases. Three keywords were used: Influenza vaccine, perceptions and Middle East. Empirical studies that dealt with people/healthcare worker (HCW) perceptio
The objectives of this study were to review the literature covering the perceptions about influenza vaccines in the Middle East and to determine factors influencing the acceptance of vaccination using Health Belief Model (HBM).
A comprehensive literature search was performed utilizing PubMed and Google Scholar databases. Three keywords were used: Influenza vaccine, perceptions and Middle East. Empirical studies that dealt with people/healthcare worker (HCW) perceptio
The cuneiform images need many processes in order to know their contents
and by using image enhancement to clarify the objects (symbols) founded in the
image. The Vector used for classifying the symbol called symbol structural vector
(SSV) it which is build from the information wedges in the symbol.
The experimental tests show insome numbersand various relevancy including
various drawings in online method. The results are high accuracy in this research,
and methods and algorithms programmed using a visual basic 6.0. In this research
more than one method was applied to extract information from the digital images
of cuneiform tablets, in order to identify most of signs of Sumerian cuneiform.