Recently new concepts such as free data or Volunteered Geographic Information (VGI) emerged on Web 2.0 technologies. OpenStreetMap (OSM) is one of the most representative projects of this trend. Geospatial data from different source often has variable accuracy levels due to different data collection methods; therefore the most concerning problem with (OSM) is its unknown quality. This study aims to develop a specific tool which can analyze and assess the possibility matching of OSM road features with reference dataset using Matlab programming language. This tool applied on two different study areas in Iraq (Baghdad and Karbala), in order to verify if the OSM data has the same quality in both study areas. This program, in general, consists of three parts to assess OSM data accuracy: input data, measured and analysis, output results. The output of Matlab program has been represented as graphs. These graphs showed the number of roads during different periods such as each half meter or one meter for length and every half degree for directions, and so on .The results of the compared datasets for two case studies give the large number of roads during the first period. This indicates that the differences between compared datasets were small. The results showed that the case study of Baghdad was more accurate than the case study of holy Karbala.
Realizing robust interconnectivity in a rapidly changing network topology is a challenging issue. This problem is escalating with the existence of constrained devices in a vehicular environment. Several standards have been developed to support reliable communication between vehicular nodes as the IEEE 1609 WAVE stack. Mitigating the impact of security/mobility protocols on limited capability nodes is a crucial aspect. This paper examines the burden of maintaining authenticity service that associated with each handover process in a vehicular network. Accordingly, a network virtualization-based infrastructure is proposed which tackles the overhead of IEEE 1906 WAVE standard on constrained devices existed in vehicular network. The virtualized
... Show MoreImitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing co
... Show MoreIn this paper, wireless network is planned; the network is predicated on the IEEE 802.16e standardization by WIMAX. The targets of this paper are coverage maximizing, service and low operational fees. WIMAX is planning through three approaches. In approach one; the WIMAX network coverage is major for extension of cell coverage, the best sites (with Band Width (BW) of 5MHz, 20MHZ per sector and four sectors per each cell). In approach two, Interference analysis in CNIR mode. In approach three of the planning, Quality of Services (QoS) is tested and evaluated. ATDI ICS software (Interference Cancellation System) using to perform styling. it shows results in planning area covered 90.49% of the Baghdad City and used 1000 mob
... Show MoreWireless Sensor Networks (WSNs) are promoting the spread of the Internet for devices in all areas of
life, which makes it is a promising technology in the future. In the coming days, as attack technologies become
more improved, security will have an important role in WSN. Currently, quantum computers pose a significant
risk to current encryption technologies that work in tandem with intrusion detection systems because it is
difficult to implement quantum properties on sensors due to the resource limitations. In this paper, quantum
computing is used to develop a future-proof, robust, lightweight and resource-conscious approach to sensor
networks. Great emphasis is placed on the concepts of using the BB8
Computer systems and networks are being used in almost every aspect of our daily life; as a result the security threats to computers and networks have also increased significantly. Traditionally, password-based user authentication is widely used to authenticate legitimate user in the current system0T but0T this method has many loop holes such as password sharing, shoulder surfing, brute force attack, dictionary attack, guessing, phishing and many more. The aim of this paper is to enhance the password authentication method by presenting a keystroke dynamics with back propagation neural network as a transparent layer of user authentication. Keystroke Dynamics is one of the famous and inexpensive behavioral biometric technologies, which identi
... Show MoreThe water supply network inside the building is of high importance due to direct contact with the user that must be optimally designed to meet the water needs of users. This work aims to review previous research and scientific theories that deal with the design of water networks inside buildings, from calculating the amount of consumption and the optimal distribution of the network, as well as ways to rationalize the use of water by the consumer. The process of pumping domestic water starts from water treatment plants to be fed to the public distribution networks, then reaching a distribution network inside the building till it is provided to the user. The design of the water supply network inside the building is
... Show More