Nanofluids, liquid suspensions of nanoparticles (Np), are an effective agent to alter the wettability of oil-wet reservoirs to water-wet thus promoting hydrocarbon recovery. It can also have an application to more efficient carbon storage. We present a series of contact angle (θ) investigations on initially oil-wet calcite surfaces to quantify the performance of hydrophilic silica nanoparticles for wettability alteration. These tests are conducted at typical in-situ high pressure (CO2), temperature and salinity conditions. A high pressure–temperature (P/T) optical cell with a regulated tilted surface was used to measure the advancing and receding contact angles at the desired conditions. The results showed that silica nanofluids can alter the wettability of oil-wet calcite to strongly water-wet at all operational conditions. Although limited desorption of silica nanoparticles occurred after exposure to high pressure (20 MPa), nanoparticle adsorption on the oil-wet calcite surface was mainly irreversible. The nanofluid concentration and immersion time played crucial roles in improving the efficiency of diluted nanofluids while salinity was less significant at high pressure and temperature. The findings provide new insights into the potential for nanofluids being applied for improved enhanced oil recovery and carbon sequestration and storage.
Several studies have shown that certain microbes, mainly bacteria may have the ability to digest plastic wastes. The goal of this study was to see how well Bacillus subtilis, Staphylococcus lentus, Aeromonas hydrophila, Sphingomonas paucimobilis and Kocuria paedia degrade three kinds of oil-based plastics: low-density polyethylene (LDPE), polystyrene (PS) and polyvinylchloride (PVC) polymer sheets. The experiment was conducted for 30 days under laboratory conditions with occasional shaking at 180 rpm and 32°C. Biodegradation was measured in terms of weight loss.. Accordingto IR Spectroscopy, the C-H stretch band at 2920cm-1 improved as a result of bacterial degradation of polyethyl
... Show MoreThe Hartha Formation has been investigated from a biostratigraphic view in three subsurface sections in the Nasiriyah Oil field, wells Ns1, Ns3, and Ns4, South of Iraq. Hartha Formation is composed of limestone and has various areas of intense dolomitization alternating with marly limestone. The formation ranges in thickness from 126 to 182 meters. Thirteen large and small benthic foraminifer species and genera are identified from Hartha Formation. Based on the large benthic foraminifer's assemblage, one distinct biozone was recognized after an examination of the paleontological datum in the investigated area showed that the studied wells contained a diversity of foraminiferal species, the larger foraminifers biozone was propose
... Show MoreIn petroleum industry, there are two major operations that can potentially impact the environment: Drilling and production. Both activities generate a significant volume of wastes include drill cuttings contaminated with hydrocarbons, wide variety of chemical additives, produced water and air pollutants. The potential impact depends primarily on the material, its concentration after release, and the biotic community that is exposed.
In this study, many drilling locations and production facilities have been investigated and examined for their adverse effects on the environment. Contamination with hydrocarbons, heavy metals, salts, other associated wastes and air pollution were detected at many sits.
Understanding of drilling and pro
This study deals with the seismic reflection interpretation of Cretaceous Formations in Tuba oil field, southern Iraq, including structural and stratigraphic techniques. The study achieved by using Geofram , Geolog and Petrel software. The interpretation process, of 2-D seismic data and well logs have been used. Based on well logs and synthetic traces two horizons were identified and picked which are the tops of Mishrif and Zubair Formations. These horizons were followed over all the area in order to obtain their structural setting. Structural interpretation indicates that the Tuba oil field is an anticline structure as well as the presence of normal fault near Mishrif Formation trending NE-SW. Information from the wells appeared Mishrif
... Show More
Background: Essential oils extracted from plants have been widely used in antimicrobial activity, particularly the Callistemon viminalis, with a high number of essential oils extracted. Objectives: To identify the chemical composition of essential oil derived from Callistemon viminalis and evaluates its antimicrobial activity against selected bacterial and fungal strains. Subjects and methods: During the study, the antimicrobial activity of different selected essential oils on some bacteria (Escherichia coli, Pseudomonas aeruginosa, Salmonella enteritidis, Staphylococcus aureus, and Streptococcus pneumonia) and fungus (Candida albicans) was evalua |
The petroleum sector has a significant influence on the development of multiphase detection sensor techniques; to separate the crude oil from water, the crude oil tank is used. In this paper, a measuring system using a simple and low cost two parallel plate capacitance sensor is designed and implemented based on a Micro controlled embedded system plus PC to automatically identify the (gas/oil) and (oil/water) dynamic multi-interface in the crude oil tank. The Permittivity differences of two-phase liquids are used to determine the interface of them by measuring the relative changes of the sensor’s capacitance when passes through the liquid’s interface. The experiment results to determine the liquid’s interface is sa
... Show MoreCarbonate matrix stimulation technology has progressed tremendously in the last decade through creative laboratory research and novel fluid advancements. Still, existing methods for optimizing the stimulation of wells in vast carbonate reservoirs are inadequate. Consequently, oil and gas wells are stimulated routinely to expand production and maximize recovery. Matrix acidizing is extensively used because of its low cost and ability to restore the original productivity of damaged wells and provide additional production capacity. The Ahdeb oil field lacks studies in matrix acidizing; therefore, this work provided new information on limestone acidizing in the Mishrif reservoir. Moreover, several reports have been issued on the difficulties en
... Show MoreSadi formation is one of the main productive formations in some of Iraqi oil fields. This formation is characterized by its low permeability values leading to low production rates that could be obtained by the natural flow.
Thus, Sadi formation in Halfaya oil field has been selected to study the success of both of "Acid fracturing" and "Hydraulic fracturing" treatments to increase the production rate in this reservoir.
In acid fracturing, four different scenarios have been selected to verify the effect of the injected fluid acid type, concentration and their effect on the damage severity along the entire reservoir.
The reservoir damage severity has been taken as "Shallow–Medium– Sever
... Show MorePermeability is one of the essential petrophysical properties of rocks, reflecting the rock's ability to pass fluids. It is considered the basis for building any model to predict well deliverability. Yamama formation carbonate rocks are distinguished by sedimentary cycles that separate formation into reservoir units and insulating layers, a very complex porous system caused by secondary porosity due to substitute and dissolution processes. Those factors create permeability variables and vary significantly. Three ways used for permeability calculation, the firstly was the classical method, which only related the permeability to the porosity, resulting in a weak relationship. Secondly, the flow zone indicator (FZI) was divided reservoir into
... Show MoreThe Mishrif reservoir (Cenomanian - Turonian) in the Z, H, B and N oilfields in southern Iraq was investigated to clarify how nickel, vanadium, asphaltene, NSO and sulfur content affect the crude oil quality. The GC-Mass and ICP-MS analyses were used to provide fruitful hydrocarbon results. Classification of crude oil based on API gravity broadly indicates the oil's density and general properties. Typically, lighter crude oils are easier to refine, yield higher percentages of valuable products such as gasoline and diesel, and have a higher market value. Heavier crude oils require more processing and may yield more residual products, such as heavy fuel oil and asphalt. The Mishrif crude oil was classified as a medium sour crude oil c
... Show More