Preferred Language
Articles
/
sIZsWIYBIXToZYALPIiY
Thermal Properties of Hydrated Lime-Modified Asphalt Concrete and Modelling Evaluation for Their Effect on the Constructed Pavements in Service
...Show More Authors

Flexible pavements are subjected to three main distress types: fatigue crack, thermal crack, and permanent deformation. Under severe climate conditions, thermal cracking particularly contributes largely to a considerable scale of premature deterioration of pavement infrastructure worldwide. This challenge is especially relevant for Europe, as weather conditions vary significantly throughout the year. Hydrated lime (HL) has been recognized as an effective additive to improve the mechanical properties of asphalt concrete for pavement applications. Previous research has found that a replacement of conventional limestone dust filler using hydrated lime at 2.5% of the total weight of aggregates generated an optimum improvement in the mechanical properties of the asphalt concrete mixes used for all three purposed layers (i.e., wearing, levelling, and base) at atmospheric temperatures from mild to relatively high. This paper reports on a continuous experimental test for the thermal properties of the optimized hydrated lime-modified mixes. The experiment together with that conducted before provides the required data to characterize the thermomechanical constitutive relations of the optimized hydrated lime-modified mixes. The obtained thermal and mechanical properties thereafter were implemented in a numerical modelling study for a scenario involving pavement exposed to coupled thermal and traffic service conditions. The study has demonstrated that using HL in mineral filler enhances the thermal properties of asphalt concrete, which, however, showed little influence on the local temperature profiles within the pavement structure. The thermal effect is pronounced under the coupled thermomechanical conditions for a pavement exposed to both traffic and climatic impacts. The HL pavement has about 1.5% less deformation, and 39% less stress level under traffic loading only, but the thermal effect increases the maximum total internal tensile stress level by 26% in the HL pavement in winter season. The modelling analysis has shown that the local maximum tensile stress dominates in the surface region of the HL pavement. It will help to reduce the workload of crack repairing and in long term help on saving costs and efforts of maintenance.

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Jul 22 2023
Journal Name
Journal Of Engineering
Surface Free Energy for the Evaluation of Asphalt Binder Stripping
...Show More Authors

Stripping is one of the major distresses within asphalt concrete pavements caused due to penetration of water within the interface of asphalt-aggregate matrix. In this work, one grade of asphalt cement (40-50) was mixed with variable percentages of three types of additives (fly ash, fumed silica, and phosphogypsum) to obtained an modified asphalt cement to resist the effect of stripping phenomena .The specimens have been tested for physical properties according to AASHTO. The surface free energy has been measured by using two methods namely, the wilhelmy technique and the Sessile drop method according to NCHRP-104
procedures. Samples of asphalt concrete using different asphalt cement and modified asphalt cement percentages(4.1,4.6 an

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
Some Properties of Polymer Modified Self-Compacting Concrete Exposed to Kerosene and Gas Oil
...Show More Authors

This thesis aims to study the effect of addition polymer materials on mechanical properties of self-compacting concrete, and also to assess the influence of petroleum products (kerosene and gas oil) on mechanical properties of polymer modified self-compacting concrete (PMSCC) after different exposure periods of (30 ,60 ,90 ,and 180 days).

Two type of curing are used; 28 days in water for SCC and 2 days in water followed 26 days in air for PMSCC.

The test results show that the PMSCC (15% P/C ratio) which is exposed to oil products recorded a lower deterioration in compressive strength's values than reference concrete. The percentages of reduction in compressive strength values of PMSCC (15% P/C ratio) was

... Show More
View Publication Preview PDF
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Effect of high and low density polyethylene on some mechanical properties of concrete
...Show More Authors

The increasing use of plastics in various aspects of modern life resulted in the availability of enormous amount of wastes, including a negative effect on the environment and humans. So it is necessary to find solutions to deal with these wastes and ensure to use them as solutions to use in concrete mix . In this research the production of concrete containing high and low density polyethylene has been used by (5, 10, 15)% as a replacement of part of the volume of sand, so as to obtain concrete good compressive strength as well as other benefits such as improved possibility of pumping concrete and reduce the loss of concrete for workability polymer is a material that is non-absorbable of water . It is also intended to dispose of these was

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Feb 01 2020
Journal Name
Journal Of Water Process Engineering
Biochemical performance modelling of non-vegetated and vegetated vertical subsurface-flow constructed wetlands treating municipal wastewater in hot and dry climate
...Show More Authors

Scopus (34)
Crossref (33)
Scopus Clarivate Crossref
Publication Date
Tue Oct 30 2018
Journal Name
Civil Engineering Journal
Equivalent Modulus of Asphalt Concrete Layers
...Show More Authors

A flexible pavement structure usually comprises more than one asphalt layer, with varying thicknesses and properties, in order to carry the traffic smoothly and safely. It is easy to characterize each asphalt layer with different tests to give a full description of that layer; however, the performance of the whole; asphalt structure needs to be properly understood. Typically, pavement analysis is carried out using multi-layer linear elastic assumptions, via equations and computer programs such as KENPAVE, BISAR, etc. These types of analysis give the response parameters including stress, strain, and deflection at any point under the wheel load. This paper aims to estimate the equivalent Resilient Modulus (MR) of the asphalt concrete

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Results In Engineering
Performance evaluation of asphalt concrete mixes under varying replacement percentages of natural sand
...Show More Authors

Frequently, load associated mode of failure, rutting and fatigue, are the main failure types found in some newly constructed roads within Baghdad, the capital of Iraq, and some suburban areas. The use of excessive amount of natural sand in asphalt concrete mixes which is attractive to local contractors could be one of the possible causes to the lack of strength properties of the mixes resulting in frustration in the pavement performance. In this study, the performance properties of asphalt concrete mixes with two natural sand types, desert and river sands, were evaluated. Moreover, five replacement rates of 0, 25, 50, 75, and 100% by weight of the fine aggregate finer than 4.75 were used. The performance properties including moisture susc

... Show More
View Publication
Crossref (17)
Crossref
Publication Date
Sat Feb 01 2020
Journal Name
Civil Engineering Journal
Assessment of Moisture Susceptibility for Asphalt Mixtures Modified by Carbon Fibers
...Show More Authors

Moisture induced damage in asphaltic pavement might be considered as a serious defect that contributed to growth other distresses such as permanent deformation and fatigue cracking. This paper work aimed through an experimental effort to assess the behaviour of asphaltic mixtures that fabricated by incorporating several dosages of carbon fiber in regard to the resistance potential of harmful effect of moisture in pavement. Laboratory tests were performed on specimens containing fiber with different lengths and contents. These tests are: Marshall Test, the indirect tensile test and the index of retained strength. The optimum asphalt contents were determined based on the Marshall method. The preparation of asphaltic mixtures involved

... Show More
Scopus (25)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Engineering
Evaluation of Job-Mix Formula Tolerances as Related to Asphalt Mixtures Properties
...Show More Authors

The current Iraqi standard specifications for roads and bridges allowed the prepared Job-Mix Formula for asphalt mixtures to witness some tolerances with regard to the following: coarse aggregate gradation by ± 6.0 %, fine aggregate gradation by ± 4.0 %, filler gradation by ± 2.0 %, asphalt cement content by ± 0.3 % and mixing temperature by ± 15 oC. The objective of this work is to evaluate the behavior of asphalt mixtures prepared by different aggregates gradations (12.5 mm nominal maximum size) that fabricated by several asphalt contents (40-50 grade) and various mixing temperature. All the tolerances specified in the specifications are taken into account, furthermore, the zones beyond these tolerances

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Journal Of Engineering
Assessing the Moisture and Aging Susceptibility of Cold Mix Asphalt Concrete
...Show More Authors

Laboratory experience in Iraq with cold asphalt concrete mixtures is very limited. The design and use of cold mixed asphalt concrete had no technical requirements. In this study, two asphalt concrete mixtures used for the base course were prepared in the laboratory using conventional cold-mixing techniques to test cold asphalt mixture (CAM) against aging and moisture susceptibility. Cold asphalt mixtures specimens have been prepared in the lab with cutback and emulsion binders, different fillers, and curing times. Based on the Marshal test result, the cutback proportion was selected with the filler, also based on the Marshal test emulsion. The first mixture was medium setting cationic emulsion (MSCE) as a binder, hydrate

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
The Effect of Different Types of Aggregate and Additives on the Properties of Self-Compacting Lightweight Concrete
...Show More Authors

The major aim of this research is study the effect of the type of lightweight aggregate (Porcelinite and Thermostone), type and ratio of the pozzolanic material(SF and HRM) and the use of different ratios of w/cm ratio(0.32 and 0.35) on the properties of SCLWC in the fresh and hardened state. SF and HRM are used in three percentage 5%,10%, and 15% as a partial replacement by weight of
cement for all types of SCLWC. The requirements of self-compatibility for SCC are fulfilled by using the high performance superplasticizer (G51) at 1.2liter per 100 kg of cement. The values of air dry density and compressive strength at age of 28 days within the limits of structural lightweight concrete. The air dry density and compressive strength at a

... Show More
View Publication Preview PDF
Crossref (1)
Crossref