Flexible pavements are subjected to three main distress types: fatigue crack, thermal crack, and permanent deformation. Under severe climate conditions, thermal cracking particularly contributes largely to a considerable scale of premature deterioration of pavement infrastructure worldwide. This challenge is especially relevant for Europe, as weather conditions vary significantly throughout the year. Hydrated lime (HL) has been recognized as an effective additive to improve the mechanical properties of asphalt concrete for pavement applications. Previous research has found that a replacement of conventional limestone dust filler using hydrated lime at 2.5% of the total weight of aggregates generated an optimum improvement in the mechanical properties of the asphalt concrete mixes used for all three purposed layers (i.e., wearing, levelling, and base) at atmospheric temperatures from mild to relatively high. This paper reports on a continuous experimental test for the thermal properties of the optimized hydrated lime-modified mixes. The experiment together with that conducted before provides the required data to characterize the thermomechanical constitutive relations of the optimized hydrated lime-modified mixes. The obtained thermal and mechanical properties thereafter were implemented in a numerical modelling study for a scenario involving pavement exposed to coupled thermal and traffic service conditions. The study has demonstrated that using HL in mineral filler enhances the thermal properties of asphalt concrete, which, however, showed little influence on the local temperature profiles within the pavement structure. The thermal effect is pronounced under the coupled thermomechanical conditions for a pavement exposed to both traffic and climatic impacts. The HL pavement has about 1.5% less deformation, and 39% less stress level under traffic loading only, but the thermal effect increases the maximum total internal tensile stress level by 26% in the HL pavement in winter season. The modelling analysis has shown that the local maximum tensile stress dominates in the surface region of the HL pavement. It will help to reduce the workload of crack repairing and in long term help on saving costs and efforts of maintenance.
Implementation of Warm Mix Asphalt concrete (WMA) is getting global acceptance due to the restrictions for protecting the environment and the requirements to reduce fuel consumption. In this investigation, two WMA mixtures have been prepared in the laboratory using medium curing cutback (MC-30) and Cationic emulsion asphalt. Hot Mix Asphalt (HMA) was also prepared for comparison. The cylinder specimens (63.5mm) in height and (101.6mm) in diameter were constructed from the mixtures and subjected to indirect tensile strength test to determine the Tensile Strength Ratio (TSR). The cylinder specimens of (101.6mm) in height and (101.6mm) in diameter were also constructed from those mixtures and subjected to static compressive
... Show MoreHigh performance self-consolidating concrete HP-SCC is one of the most complex types of concrete which have the capacity to consolidated under its own weight, have excellent homogeneity and high durability. This study aims to focus on the possibility of using industrial by-products like Silica fumes SF in the preparation of HP-SCC enhanced with discrete steel fibers (DSF) and monofilament polypropylene fibers (PPF). From experimental results, it was found that using DSF with volume fraction of 0.50 %; a highly improvements were gained in the mechanical properties of HP-SCC. The compressive strength, splitting tensile strength, flexural strength and elastic modulus improved about 65.7 %, 70.5 %, 41.7 % and 80.3 % at 28 days age, respectively
... Show MoreIn the current study, CuAl0.7In0.3Te2 thin films with 400 nm thickness were deposited on glass substrates using thermal evaporation technique. The films were annealed at various annealing temperatures of (473,573,673 and 773) K. Furthermore, the films were characterized by X-ray Diffraction spectroscopy (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and Ultra violet-visible (UV–vis). XRD patterns confirm that the films exhibit chalcopyrite structure and the predominant diffraction peak is oriented at (112). The grain size and surface roughness of the annealed films have been reported. Optical properties for the synthesized films including, absorbance, transmittance, dielectric constant, and refr
... Show MoreThe research aims to assess the local accounting procedures related in one of developments that have taken place, and largely on the structure of the Iraqi economic activity. But a partnership between the (public and private sector), or one of the types of joint arrangements, and through the use of the analytical method and extrapolate the reality of the accounting treatments in Company research sample. Research found to a number of conclusions that the unified accounting system applied in the economic units that deal with contracting joint arrangements formula suffers from obvious shortcomings, and reflected the common arrangements suffer from obvious shortcomings. and reflected on the quality of financial reporting, and the urgent need
... Show MoreRecycling process presents a sustainable pavement by using the old materials that could be milled, mixed with virgin materials and recycling agents to produce recycled mixtures. The objective of this study is to evaluate the impact of water on recycled asphalt concrete mixtures, and the effect of the inclusion of old materials into recycled mixtures on the resistance of water damage. A total of 54 Marshall Specimens and 54 compressive strength specimens of (virgin, recycled, and aged asphalt concrete mixtures) had been prepared, and subjected to Tensile Strength Ratio test, and Index of Retained Strength test. Four types of recycling agents (used oil, oil + crumb rubber, soft grade asphalt cement, and asphalt cement + Su
... Show MoreIn this research prepared two composite materials , the first prepared from unsaturated polyester resin (UP) , which is a matrix , and aluminum oxide (Al2O3) , and the second prepared from unsaturated polyester resin and aluminum oxide and copper oxide (CuO) , the two composites materials (Alone and Hybrid) of percentage weight (5,10,15)% . All samples were prepared by hand layup process, and study the electrical and thermal conductivity. The results showed decrease electrical conductivity from (10 - 2.39) ×10-15 for (Up+ Al2O3) and from (10 - 2.06)×10-15 for (Up+ Al2O3+ CuO) .But increase thermal conductivity from( 0.17 - 0.505) for (Up+ Al2O3) and from (0.17 - 0.489) for (Up+ Al2O3+ CuO).
Anticyclone of synoptic studies that influence weather and climate of Iraq, The aim of
the study is to clarify the effect variation of repetition of Anticyclone and effect on thermal
characteristic in Iraq were pressure level has been analyzed (1000) millibars and that because
of pressure level is the closet to the earth surface and the clarity of climatic phenomenon
based on a systematic analysis of synoptic seeking maps and observation and (12:00)
according to timing GMT for five climatic stations which is (Mosul, Kirkuk, Baghdad, Rutba,
and Basra) and so far three consecutive climatic cycles which is first climatic cycle for period
(1986-1976). and second climatic cycle for period (1997-1987) and third climatic cy
In this work, InSe thin films were deposited on glass substrates by thermal evaporation technique with a deposit rate of (2.5∓0.2) nm/sec. The thickness of the films was around (300∓10) nm, and the thin films were annealed at (100, 200 and 300)°C. The structural, morphology, and optical properties of Indium selenide thin films were studied using X-ray diffraction, Scanning Electron Microscope and UV–Visible spectrometry respectively. X-ray diffraction analyses showed that the as deposited thin films have amorphous structures. At annealing temperature of 100°C and 200°C, the films show enhanced crystalline nature, but at 300°C the film shows a polycrystalline structure with Rhombohedral phas