Alpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images
This study is concentrated to investigate the effects of aeration and stirring speed on the volumetric mass transfer coefficient (KLa). A dynamic technique was used in estimating KLa values in order to achieve the aim of this study.
This study was done in 10L bioreactor by using two medias:-
- Dionized water
- Xanthan solution (1 g /L)
Moreover, the research covered a comparison between the obtained values of KLa.
The Xanthan solution was used because of its higher viscosity in comparison with water. It behaves similarly to the cultivation medium when organisms are cultivated in a bioreactor. Growth of organisms in the reactor l
... Show MoreBackground: Tumor necrosis factor-alpha (TNF-α) and interleukins play important roles in the pathogenesis of rheumatoid arthritis (RA). Genetic research has been employed to find many of the missing connections between genetic risk variations and causal genetic components. Objective: The goal of this study is to look at the genetic variations of TNF-α and interleukins in Iraqi RA patients and see how they relate to disease severity or response to biological therapy. Method: Using specific keywords, the authors conducted a systematic and comprehensive search to identify relevant Iraqi studies examining the genetic variations of TNF-α and interleukins in Iraqi RA patients and how they relate to disease severity or response to biolo
... Show MoreWeibull distribution is considered as one of the most widely distribution applied in real life, Its similar to normal distribution in the way of applications, it's also considered as one of the distributions that can applied in many fields such as industrial engineering to represent replaced and manufacturing time ,weather forecasting, and other scientific uses in reliability studies and survival function in medical and communication engineering fields.
In this paper, The scale parameter has been estimated for weibull distribution using Bayesian method based on Jeffery prior information as a first method , then enhanced by improving Jeffery prior information and then used as a se
... Show MoreIn this paper, some estimators of the unknown shape parameter and reliability function of Basic Gompertz distribution (BGD) have been obtained, such as MLE, UMVUE, and MINMSE, in addition to estimating Bayesian estimators under Scale invariant squared error loss function assuming informative prior represented by Gamma distribution and non-informative prior by using Jefferys prior. Using Monte Carlo simulation method, these estimators of the shape parameter and R(t), have been compared based on mean squared errors and integrated mean squared, respectively
In this paper, we used maximum likelihood method and the Bayesian method to estimate the shape parameter (θ), and reliability function (R(t)) of the Kumaraswamy distribution with two parameters l , θ (under assuming the exponential distribution, Chi-squared distribution and Erlang-2 type distribution as prior distributions), in addition to that we used method of moments for estimating the parameters of the prior distributions. Bayes
The purpose of present work is to study the relationship of the deformed shape of the nucleus with the radioactivity of nuclei for (Uranium-238 and Thorium-232) series. To achieve our purposes we have been calculated the quadruple deformation parameter (β2) and the eccentricity (e) and compare the radioactive series with the change of the and (e) as indicator for the changing in the nucleus shape with the radioactivity. To obtain the value of quadruple deformation parameter (β2), the adopted value of quadruple transition probability B (E2; 0+ → 2+) was calculated from Global Best fit equation. While the eccentricity (e) was calculated from the values of the minor and major ellipsoid axis’s (a & b). From the results, it is obvi
... Show MoreThis paper presents a hybrid approach for solving null values problem; it hybridizes rough set theory with intelligent swarm algorithm. The proposed approach is a supervised learning model. A large set of complete data called learning data is used to find the decision rule sets that then have been used in solving the incomplete data problem. The intelligent swarm algorithm is used for feature selection which represents bees algorithm as heuristic search algorithm combined with rough set theory as evaluation function. Also another feature selection algorithm called ID3 is presented, it works as statistical algorithm instead of intelligent algorithm. A comparison between those two approaches is made in their performance for null values estima
... Show MoreIncreasing world demand for renewable energy resources as wind energy was one of the goals behind research optimization of energy production from wind farms. Wake is one of the important phenomena in this field. This paper focuses on understanding the effect of angle of attack (α) on wake characteristics behind single horizontal axis wind turbines (HAWT). This was done by design three rotors different from each other in value of α used in the rotor design process. Values of α were (4.8˚,9.5˚,19˚). The numerical simulations were conducted using Ansys Workbench 19- Fluent code; the used turbulence model was (k-ω SST). The results showed that best value for extracted wind energy was at α=19˚, spread distance of wak
... Show More