Achieving an accurate and optimal rate of penetration (ROP) is critical for a cost-effective and safe drilling operation. While different techniques have been used to achieve this goal, each approach has limitations, prompting researchers to seek solutions. This study’s objective is to conduct the strategy of combining the Bourgoyne and Young (BYM) ROP equations with Bagging Tree regression in a southern Iraqi field. Although BYM equations are commonly used and widespread to estimate drilling rates, they need more specific drilling parameters to capture different ROP complexities. The Bagging Tree algorithm, a random forest variant, addresses these limitations by blending domain knowledge and capturing non-linear relationships. Its ensemble nature also mitigates the impact of outliers. This approach combines physics-based equations with machine learning to enable more accurate ROP predictions in drilling operations. It enhances drilling efficiency, reduces expenses, and improves decision-making in the oil and gas sector. Extensive testing on actual drilling datasets has demonstrated outstanding performance compared to the multiple linear regression (MLR) method. With the increased R2 and zero P-value. positive findings show that this tool can benefit precise future ROP prediction in southern Iraqi oil well drilling.
SMNs like Facebook, YouTube, Twitter, WhatsApp,..etc. are among the most popular sites on the Internet. These sites can provide a powerful means of sharing, organizing, finding information and knowledge. The popularity of these sites provides an opportunity to measure the use them in knowledge sharing, which needs a special scale, but unfortunately, there is no special scale for that. Thus, this study supposes to use SCT as a scale to measure the use of SMNs in electronic knowledge sharing due to it has been used to measure knowledge sharing with its traditional form. This study can help the decision-makers to use these SMNs to share the academics’ knowledge in educational institutes to the communi
... Show MoreThe tunnel’s stability during construction is a very important matter. Some methods have been proposed for stability evaluation, but the hazard warning levels (HWLs) are more applicable among these methods. Despite monitoring and applying HWLs, several collapses in Shibli twin tunnels in Iran have cast doubts on the accuracy of this criterion in the presence of water. In this study, the critical strains under different water contents were measured through uniaxial compressive strength tests on 11 different shale and marl samples. A comparison of laboratory tests and numerical results shows that the influence of the moisture content on the critical strain is negligible. In addition, the results show that there is no dir
... Show MoreRation power plants, to generate power, have become common worldwide. One such one is the steam power plant. In such plants, various moving parts of heavy machines generate a lot of noise. Operators are subjected to high levels of noise. High noise level exposure leads to psychological as well physiological problems; different kinds of ill effects. It results in deteriorated work efficiency, although the exact nature of work performance is still unknown. To predict work efficiency deterioration, neuro-fuzzy tools are being used in research. It has been established that a neuro-fuzzy computing system helps in identification and analysis of fuzzy models. The last decade has seen substantial growth in development of various neuro-fuzzy systems
... Show MoreThe problem of the research lies in choosing agility tests suitable to the test taker to observe the relative changes in some players. In addition to that, there are a lot of agility tests that lack special test models that coordinate gender and age. This means the youth basketball player on one hand and time and distance in applying the tests on the other. The importance of the research lies in designing agility tests for youth basketball players to achieve variations in tests a matter that will benefit coaches in their training. The subjects of the research were (30) youth basketball players from the specialized school of the National Center that sponsor gifted basketball players in Baghdad for the season 2014 – 2015. The data was colle
... Show MoreIn this paper we use Bernstein polynomials for deriving the modified Simpson's 3/8 , and the composite modified Simpson's 3/8 to solve one dimensional linear Volterra integral equations of the second kind , and we find that the solution computed by this procedure is very close to exact solution.
Abstract
The prevention of bankruptcy not only prolongs the economic life of the company and increases its financial performance, but also helps to improve the general economic well-being of the country. Therefore, forecasting the financial shortfall can affect various factors and affect different aspects of the company, including dividends. In this regard, this study examines the prediction of the financial deficit of companies that use the logistic regression method and its impact on the earnings per share of companies listed on the Iraqi Stock Exchange. The time period of the research is from 2015 to 2020, where 33 companies that were accepted in the Iraqi Stock Exchange were selected as a sample, and the res
... Show MoreThe two most popular models inwell-known count regression models are Poisson and negative binomial regression models. Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters. Negative binomial regression is similar to regular multiple regression except that the dependent (Y) variables an observed count that follows the negative binomial distribution. This research studies some factors affecting divorce using Poisson and negative binomial regression models. The factors are unemplo
... Show MoreThis study proposed using color components as artificial intelligence (AI) input to predict milk moisture and fat contents. In this sense, an adaptive neuro‐fuzzy inference system (ANFIS) was applied to milk processed by moderate electrical field‐based non‐thermal (NP) and conventional pasteurization (CP). The differences between predicted and experimental data were not significant (
Background: Joubert syndrome (JS) is a very rare autosomal recessive disorder characterized by agenesis of cerebellar vermis, abnormal eye movements, respiratory irregularities, and delayed generalized motor development. Retinal dystrophy and cystic kidneys may also be associated with this clinical syndrome. The importance of recognizing JS is related to the outcome and its potential complications. This syndrome is difficult to diagnose clinically because of its variable phenotype. Its neuroimaging hallmarks include the characteristic molar tooth sign and bat wing-shaped fourth ventricle