Computer systems and networks are being used in almost every aspect of our daily life; as a result the security threats to computers and networks have also increased significantly. Traditionally, password-based user authentication is widely used to authenticate legitimate user in the current system0T but0T this method has many loop holes such as password sharing, shoulder surfing, brute force attack, dictionary attack, guessing, phishing and many more. The aim of this paper is to enhance the password authentication method by presenting a keystroke dynamics with back propagation neural network as a transparent layer of user authentication. Keystroke Dynamics is one of the famous and inexpensive behavioral biometric technologies, which identifies a user based on the analysis of his/her typing rhythm. This paper utilizes keystroke features including dwell time (DT), flight time (FT), up-up time (UUT), and a mixture of theses features as keystroke representation. The back propagation neural network is trained with the mean of keystroke timing information for each character of password. These times are used to discriminate between the authentic users and impostors. Results of the experiments demonstrate that the backpropagation network with UUT features comparable to combination of DT and FT. Also, the results of backpropagation with combination of DT, FT and UUT provide low False Alarm Rate (FAR) and False Reject Rate (FRR) and high accuracy.
In this paper, we present multiple bit error correction coding scheme based on extended Hamming product code combined with type II HARQ using shared resources for on chip interconnect. The shared resources reduce the hardware complexity of the encoder and decoder compared to the existing three stages iterative decoding method for on chip interconnects. The proposed method of decoding achieves 20% and 28% reduction in area and power consumption respectively, with only small increase in decoder delay compared to the existing three stage iterative decoding scheme for multiple bit error correction. The proposed code also achieves excellent improvement in residual flit error rate and up to 58% of total power consumption compared to the other err
... Show MoreToday in the digital realm, where images constitute the massive resource of the social media base but unfortunately suffer from two issues of size and transmission, compression is the ideal solution. Pixel base techniques are one of the modern spatially optimized modeling techniques of deterministic and probabilistic bases that imply mean, index, and residual. This paper introduces adaptive pixel-based coding techniques for the probabilistic part of a lossy scheme by incorporating the MMSA of the C321 base along with the utilization of the deterministic part losslessly. The tested results achieved higher size reduction performance compared to the traditional pixel-based techniques and the standard JPEG by about 40% and 50%,
... Show MoreThis study investigates the feasibility of a mobile robot navigating and discovering its location in unknown environments, followed by the creation of maps of these navigated environments for future use. First, a real mobile robot named TurtleBot3 Burger was used to achieve the simultaneous localization and mapping (SLAM) technique for a complex environment with 12 obstacles of different sizes based on the Rviz library, which is built on the robot operating system (ROS) booted in Linux. It is possible to control the robot and perform this process remotely by using an Amazon Elastic Compute Cloud (Amazon EC2) instance service. Then, the map to the Amazon Simple Storage Service (Amazon S3) cloud was uploaded. This provides a database
... Show MoreAccurate emotion categorization is an important and challenging task in computer vision and image processing fields. Facial emotion recognition system implies three important stages: Prep-processing and face area allocation, feature extraction and classification. In this study a new system based on geometric features (distances and angles) set derived from the basic facial components such as eyes, eyebrows and mouth using analytical geometry calculations. For classification stage feed forward neural network classifier is used. For evaluation purpose the Standard database "JAFFE" have been used as test material; it holds face samples for seven basic emotions. The results of conducted tests indicate that the use of suggested distances, angles
... Show MoreSemantic segmentation realization and understanding is a stringent task not just for computer vision but also in the researches of the sciences of earth, semantic segmentation decompose compound architectures in one elements, the most mutual object in a civil outside or inside senses must classified then reinforced with information meaning of all object, it’s a method for labeling and clustering point cloud automatically. Three dimensions natural scenes classification need a point cloud dataset to representation data format as input, many challenge appeared with working of 3d data like: little number, resolution and accurate of three Dimensional dataset . Deep learning now is the po
Mobile Wireless sensor networks have acquired a great interest recently due to their capability to provide good solutions and low-priced in multiple fields. Internet of Things (IoT) connects different technologies such as sensing, communication, networking, and cloud computing. It can be used in monitoring, health care and smart cities. The most suitable infrastructure for IoT application is wireless sensor networks. One of the main defiance of WSNs is the power limitation of the sensor node. Clustering model is an actual way to eliminate the inspired power during the transmission of the sensed data to a central point called a Base Station (BS). In this paper, efficient clustering protocols are offered to prolong network lifetime. A kern
... Show More