The placement of buildings and structures on/or adjacent to slopes is possible, but this poses a danger to the structure due to failures that occur in slopes. Therefore, a solution or improvement should be determined for these issues of the collapse of the structure as a result of the failure of the slopes. A laboratory model has been built to test the impact of some variables on the bearing capacity factor. The variables include the magnitude of static axial load applied at the center of footing, the depth of embedment, the spacing between geogrid reinforcement layer and the numbering of the geogrid sheet under the footing, the inclination angle of slope clayey soil (β), the spacing between the footing's edge and the slope's end (b/H). The results show that the critical case of reduction in bearing capacity is mobilized at (b/H˂ 0.25) and (β˃ 30°). A design chart has been obtained to the case of unreinforced slope soil under a footing to describe the reduction in (Nc) when increasing the inclination angle and another design chart of the case of reinforced slope soil with (N=1, 2 and 3) has been obtained to show the increase in value of (Nc) with increasing the number of the reinforced layer at different values of (β) and finally simple equations have been obtained in order to calculate the ultimate bearing capacity of foundation on sloped clayey soil at different number of reinforcement.
Construction joints are stopping places in the process of placing concrete, and they are required because in many structures it is impractical to place concrete in one continuous operation. The amount of concrete that can be placed at one time is governed by the batching and mixing capacity and by the strength of the formwork. A good construction joint should provide adequate flexural and shear continuity through the interface.
In this study, the effect of location of construction joints on the performance of reinforced concrete structural elements is experimentally investigated.
Nineteen beam specimens with dimensions of 200×200×950 mm were tested. The variables investigated are the location of the construction joints
... Show MoreIn the geotechnical engineering applications, precise understandings are yet to be established on the effects of a foundation stiffness on its bearing capacity and settlement. The modern foundation construction uses the new available construction materials that totally change the relative stiffness of the footing structures-soil interactions such as waste material and landfill area of more residential purposes. Conventional bearing capacity equations were dealt with common rigid footing and thus cannot be used for reduced foundation rigidity. Therefore, this study investigates the effects of foundation relative stiffness on its load-displacement behaviour and the soil deformation field using compression test of a strip smooth footings on su
... Show MoreThis paper presents stochastic analysis using the perturbation method to model the structure of a container to verify the distributions of probability of maximum and minimum axial forces reactions in piles. The proposed simulation of a container port terminal under 11 scenarios of load combinations was presented. The probability distributions for live loads are assigned according to the input parameters of simulation data. Part of the load itself is implicitly combined such as vertical live load which includes the weight of equipment and containers and wind load. The structural model was simulated in the software STAAD Pro., while the statistical analyses were performed with MATLAB. The results demonstrated that, the most significant extern
... Show MoreIn order to understand the effect of (length of pile / diameter of pile) ratio on the load carrying capacity and settlement reduction behavior of piled raft resting on loose sand, laboratory model tests were conducted on small-scale models. The parameters studied were the effect of pile length and the number of piles. The load settlement behavior obtained from the tests has been validated by using 3-D finite element in ABAQUS program, was adopted to understand the load carrying response of piled raft and settlement reduction. The results of experimental work show that the increase in (Lp/dp) ratio led to increase in load carrying capacity by piled raft from (19.75 to 29.35%), (14.18 to 28.87%) and (0 to 16.49%) , the maximum load carried
... Show MoreThis qualitative study was conducted on eight types of commercial baking yeast which available in local markets to estimate their fermentation activity as affecting the Bread industry and the impact of the salt added to DoughLeavening, The results showed a great variation in the fermentation capacity of yeast samples (their role in swelling the dough), most notably the sample value Y3 and least sample Y7 and reached 80% and 20% respectively, and the value of Leavening by using the two types of yeast with addition of three levels of salt (0 , 1 and 2%) have 20.0 , 19.7 and 15.7 of the sample Y3, compared with 10.5 , 10.3 and 8.8 of the sample Y7 for each of the levels of salt respectively, reflect
... Show MoreThe geochemical study of the Oligocene-Miocene succession Anah, Euphrates, and Fatha formations, western Iraq, was carried out to discriminate their depositional environments. Different major and trace patterns were observed between these formations. The major elements (Ca, Mg, Fe, Mn, K, and Na) and trace elements (Li, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr, Zr, Cs, Ba, Hf, W, Pb, Th, and U) are a function of the setting of the depositional environments. The reefal facies have lower concentrations of MgO, Li, Cr, Co, Ni, Ga, Rb, Zr, and Ba than marine and lagoonal facies but have higher concentrations of CaO, V, and Sr than it. Whereas dolomitic limestone facies are enriched V, and U while depletion in Li, Cr, Ni, Ga, Rb, Sr, Zr, Ba, an
... Show MoreThe ability to produce load-bearing masonry units adopting ACI 211.1 mix design using (1:3.2:2.5) as (cement: fine aggregate: coarse aggregate) with slump range (25-50mm) which can conform (dimension, absorption, and compressive strength) within IQS 1077/1987 requirements type A was our main goal of the study. The ability to use low cement content (300 kg/m3) to handle our market price products since the most consumption in wall construction for low-cost buildings was encouraging. The use of (10 and 20%) of LECA as partial volume replacement of coarse aggregate to reduce the huge weight of masonry blocks can also be recommended. The types of production of the load-bearing masonry units were A and B for (
... Show MoreThe optimum design is characterized by structural concrete components that can sustain loads well beyond the yielding stage. This is often accomplished by a fulfilled ductility index, which is greatly influenced by the arrangement of the shear reinforcement. The current study investigates the impact of the shear reinforcement arrangement on the structural response of the deep beams using a variety of parameters, including the type of shear reinforcement, the number of lacing bars, and the lacing arrangement pattern. It was found that lacing reinforcement, as opposed to vertical stirrups, enhanced the overall structural response of deep beams, as evidenced by test results showing increases in ultimate loads, yielding, and cracking of
... Show More