In this research, the semiparametric Bayesian method is compared with the classical method to estimate reliability function of three systems : k-out of-n system, series system, and parallel system. Each system consists of three components, the first one represents the composite parametric in which failure times distributed as exponential, whereas the second and the third components are nonparametric ones in which reliability estimations depend on Kernel method using two methods to estimate bandwidth parameter h method and Kaplan-Meier method. To indicate a better method for system reliability function estimation, it has be
... Show MoreThe method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par
... Show MoreIn this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.
Personalized Medicine represents a recent revolution in healthcare practice, focusing on tailoring different therapies to be precise for a specific individual; this is aided by exploring the number of genetic predispositions and lifestyle choices that fit each individual. In this article, the authors utilize and gather recent literature and opinions to discuss the impact of personalized medicine on chronic disease management and patient quality of life. Additional attention is paid to limits and possible ethical issues. Chronic diseases such as Hypertension, Diabetes, and chronic kidney diseases adversely affect multiple health indicators, including Quality of Life (QoL) and well-being. This will have additional impacts on physical
... Show MoreDesign of experiments (DOE) was made by Minitab software for the study of three factors used in the precipitation process of the Sodium Aluminate solution prepared from digestion of α-Al2O3 to determine the optimum conditions to a produce Boehmite which is used in production of ɤ-Al2O3 during drying and calcination processes, the factors are; the temperature of the sodium aluminate solution, concentration of HCl acid added for the precipitation and the pH of the solution at which the precipitation was ended. The design of the experiments leads to 18 experiments.
The results show that the optimum conditions for the precipitation of the sodium aluminate solution which
... Show More
