The data presented in this paper are related to the research article entitled “Novel dichloro(bis{2-[1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl-κN3 ]pyridine-κN})metal(II) coordination compounds of seven transition metals (Mn, Fe, Co, Ni, Cu, Zn and Cd)” (Conradie et al., 2018) [1]. This paper presents characterization and structural data of the 2-(1-(4-methyl-phenyl)-1H-1,2,3-triazol-1-yl)pyridine ligand (L2 ) (Tawfiq et al., 2014) [2] as well as seven dichloro(bis{2- [1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl-κN3 ]pyridine-κN})metal (II) coordination compounds, [M(L2 )2Cl2], all containing the same ligand but coordinated to different metal ions. The data illustrate the shift in IR, UV/VIS, and NMR (for diamagnetic complexes) peaks wh
... Show MoreThe current research discussed biophysics data as a theoretical and applied knowledge base linking industrial design with the natural sciences at the level of applied strategies through which we can enrich the knowledge base of industrial design. The research focused on two main aspects of the scientific references for biophysics, namely: electromagnetism, and biomechanics. According to the performance and functional applications in designing the functions of industrial products at the electromagnetic level, it was found that remote sensing applications: such as fire sensors that were adopted from the insect (Black Beetle) and that their metaphors enable them to hear fire, and collision sensors, which were adopted from the insect
... Show MoreIn this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.
Personalized Medicine represents a recent revolution in healthcare practice, focusing on tailoring different therapies to be precise for a specific individual; this is aided by exploring the number of genetic predispositions and lifestyle choices that fit each individual. In this article, the authors utilize and gather recent literature and opinions to discuss the impact of personalized medicine on chronic disease management and patient quality of life. Additional attention is paid to limits and possible ethical issues. Chronic diseases such as Hypertension, Diabetes, and chronic kidney diseases adversely affect multiple health indicators, including Quality of Life (QoL) and well-being. This will have additional impacts on physical
... Show MoreThe method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par
... Show More