In today's world, the science of bioinformatics is developing rapidly, especially with regard to the analysis and study of biological networks. Scientists have used various nature-inspired algorithms to find protein complexes in protein-protein interaction (PPI) networks. These networks help scientists guess the molecular function of unknown proteins and show how cells work regularly. It is very common in PPI networks for a protein to participate in multiple functions and belong to many complexes, and as a result, complexes may overlap in the PPI networks. However, developing an efficient and reliable method to address the problem of detecting overlapping protein complexes remains a challenge since it is considered a complex and hard optimization problem. One of the main difficulties in identifying overlapping protein complexes is the accuracy of the partitioning results. In order to accurately identify the overlapping structure of protein complexes, this paper has proposed an overlapping complex detection algorithm termed OCDPSO-Net, which is based on PSO-Net (a well-known modified version of the particle swarm optimization algorithm). The framework of the OCDPSO-Net method consists of three main steps, including an initialization strategy, a movement strategy for each particle, and enhancing search ability in order to expand the solution space. The proposed algorithm has employed the partition density concept for measuring the partitioning quality in PPI network complexes and tried to optimize the value of this quantity by applying the line graph concept of the original graph representing the protein interaction network. The OCDPSO-Net algorithm is applied to a Collins PPI network and the obtained results are compared with different state-of-the-art algorithms in terms of precision ( ), recall ( ), and F-measure ( ). Experimental results confirm that the proposed algorithm has good clustering performance and has outperformed most of the existing recent overlapping algorithms. .
Background: Acute myeloid leukemia (AML) is an adult leukemia characterized by rapid proliferation of undifferentiated myeloid precursors, leading to bone marrow (BM) failure and impaired erythropoiesis. The p53 tumor suppressor protein regulates cell division and inhibits tumor development by preventing cell proliferation of altered or damaged DNA. It orchestrates various cellular reactions, including cell cycle arrest, DNA repair, and antioxidant properties. Objectives: To investigate the relationship of P53 serum level with hematological findings, remission, and survival status in de novo AML patients. Methods: This is a cross-sectional study that enrolled 63 newly diagnosed de novo AML patients, and 15 sex- and age-matched healt
... Show MoreDensity Functional Theory at the generalized-gradient approximation level coupled with large unit cell method is used to simulate the electronic structure of (II-VI) zinc-blende cadmium sulfide nanocrystals that have dimensions 2-2.5 nm. The calculated properties include lattice constant, conduction and valence bands width, energy of the highest occupied orbital, energy of the lowest unoccupied orbital, energy gap, density of states etc. Results show that lattice constant and energy gap converge to definite values. However, highest occupied orbital, lowest unoccupied orbital fluctuates indefinitely depending on the shape of the nanocrystal.
Proteases have various applications in the food, pharmaceutical, medicine, pathogenicity of some pathogenic bacteria, and detergent sectors as well as meeting the needs of approximately 60% of the global enzyme industry, whereas they catalyze the breakdown of protein molecules into peptides and amino acids. Production and purification of protease enzyme by the isolate Escherichia coli AJ55 was scrutinized in the present study. Cultivation optimum conditions, were various complex medium, carbon source, nitrogen source, temperature, pH of the medium, and time of incubation were optimized to enhance the total protease production in shake flask culture of E.coli AJ55. The nutrient broth supplemented with 2% gluco
... Show MoreIn this paper, we proposed a hybrid control methodology using improved artificial potential field with modify cat swarm algorithm to path planning of decoupled multi-mobile robot in dynamic environment. The proposed method consists of two phase: in the first phase, Artificial Potential Field method (APF) is used to generate path for each one of robots and avoided static obstacles in environment, and improved this method to solve the local minimum problem by using A* algorithm with B-Spline curve while in the second phase, modify Cat Swarm Algorithm (CSA) is used to control collision that occurs among robots or between robot with movable obstacles by using two behaviour modes: seek mode and track mode. Experimental results show that the p
... Show MoreIn this review paper, several research studies were surveyed to assist future researchers to identify available techniques in the field of infectious disease modeling across complex networks. Infectious disease modelling is becoming increasingly important because of the microbes and viruses that threaten people’s lives and societies in all respects. It has long been a focus of research in many domains, including mathematical biology, physics, computer science, engineering, economics, and the social sciences, to properly represent and analyze spreading processes. This survey first presents a brief overview of previous literature and some graphs and equations to clarify the modeling in complex networks, the detection of soc
... Show MoreIn this review paper, several research studies were surveyed to assist future researchers to identify available techniques in the field of infectious disease modeling across complex networks. Infectious disease modelling is becoming increasingly important because of the microbes and viruses that threaten people’s lives and societies in all respects. It has long been a focus of research in many domains, including mathematical biology, physics, computer science, engineering, economics, and the social sciences, to properly represent and analyze spreading processes. This survey first presents a brief overview of previous literature and some graphs and equations to clarify the modeling in complex networks, the detection of soc
... Show MoreIn this review paper, several research studies were surveyed to assist future researchers to identify available techniques in the field of infectious disease modeling across complex networks. Infectious disease modelling is becoming increasingly important because of the microbes and viruses that threaten people’s lives and societies in all respects. It has long been a focus of research in many domains, including mathematical biology, physics, computer science, engineering, economics, and the social sciences, to properly represent and analyze spreading processes. This survey first presents a brief overview of previous literature and some graphs and equations to clarify the modeling in complex networks, the detection of societie
... Show MoreClassifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area. The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and
... Show More