In today's world, the science of bioinformatics is developing rapidly, especially with regard to the analysis and study of biological networks. Scientists have used various nature-inspired algorithms to find protein complexes in protein-protein interaction (PPI) networks. These networks help scientists guess the molecular function of unknown proteins and show how cells work regularly. It is very common in PPI networks for a protein to participate in multiple functions and belong to many complexes, and as a result, complexes may overlap in the PPI networks. However, developing an efficient and reliable method to address the problem of detecting overlapping protein complexes remains a challenge since it is considered a complex and hard optimization problem. One of the main difficulties in identifying overlapping protein complexes is the accuracy of the partitioning results. In order to accurately identify the overlapping structure of protein complexes, this paper has proposed an overlapping complex detection algorithm termed OCDPSO-Net, which is based on PSO-Net (a well-known modified version of the particle swarm optimization algorithm). The framework of the OCDPSO-Net method consists of three main steps, including an initialization strategy, a movement strategy for each particle, and enhancing search ability in order to expand the solution space. The proposed algorithm has employed the partition density concept for measuring the partitioning quality in PPI network complexes and tried to optimize the value of this quantity by applying the line graph concept of the original graph representing the protein interaction network. The OCDPSO-Net algorithm is applied to a Collins PPI network and the obtained results are compared with different state-of-the-art algorithms in terms of precision ( ), recall ( ), and F-measure ( ). Experimental results confirm that the proposed algorithm has good clustering performance and has outperformed most of the existing recent overlapping algorithms. .
Fluorescent proteins (FPs) have revolutionised the life sciences, but the chromophore maturation mechanism is still not fully understood. Here we photochemically trap maturation at a crucial stage and structurally characterise the intermediate.
The current study was conducted to determine the effect of crude oil on the pigments and protein content of Hydrilla verticillata plant from December 2018 to February 2019. Hydrilla verticillata was exposed to different concentrations of treatments (0.01,0.05,0.10,0.20) % of crude oil for 24 days. The pigments content was evaluated as total chlorophyll, a, b, carotene and protein content within plant tissues during the days (1, 8, 16 and 24).
The results of this study showed an increment in the total chlorophyll values of plant, which is exposed to different concentrations of crude oil compared to the control treatment during the first day of the experiment and decreased compared to cont
... Show MoreThis study aimed to determine the effects of alcoholic and aqueous extracts of caper (Capparis Spinosa) and acetic acid on serum lipid profile and proteins levels in mice. Sixty adult mice with an average weight of 24±4 g grams were divided into four groups (15 mice for each). The first group (G1) was administrated daily with an oral dose of caper alcoholic extract (200 mg/kg) for 28 days. The second group (G2) was administrated daily with an oral dose of caper aqueous extract (200 mg/kg) for 28 days. The third group (G3) was administrated with a daily dose of 10 % acetic acid (2 ml/kg) for 28 days. The fourth Group (G4) was administrated daily with distilled water for 28 days, as a control
... Show MoreIn recent years, the field of research around the congestion problem of 4G and 5G networks has grown, especially those based on artificial intelligence (AI). Although 4G with LTE is seen as a mature technology, there is a continuous improvement in the infrastructure that led to the emergence of 5G networks. As a result of the large services provided in industries, Internet of Things (IoT) applications and smart cities, which have a large amount of exchanged data, a large number of connected devices per area, and high data rates, have brought their own problems and challenges, especially the problem of congestion. In this context, artificial intelligence (AI) models can be considered as one of the main techniques that can be used to solve ne
... Show MoreThe inelastic C2 form factors and the charge density distribution (CDD) for 58,60,62Ni and 64,66,68Zn nuclei has been investigated by employing the Skyrme-Hartree-Fock method with (Sk35-Skzs*) parametrization. The inelastic C2 form factor is calculated by using the shape of Tassie and Bohr-Mottelson models with appropriate proton and neutron effective charges to account for the core-polarization effects contribution. The comparison of the predicted theoretical values was conducted with the available measured data for C2 and CDD form factors and showed very good agreement.
In this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func
In this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha
... Show MoreBackground: Periodontitis (PD) is well-known chronic disease affecting the periodontal ligament and alveolar bone, Osteoarthritis (OA) is a chronic joint disease with compound reasons characterized by synovial inflammation, subchondral bone remodeling, also the formation of osteophytes, that cause cartilage degradation. Chronic periodontitis and osteoarthritis are considered widely prevalent diseases and related to tissue destruction due to chronic inflammation in general health and oral health. The aim of this study is todetermine the association of chronic periodontitis and osteoarthritits in patients by analysing tumor necrosis factor alpha TNFα and high sensitive c-reactive protein (hsCRP) in the serum. Materials and Method: A tot
... Show More