This paper is devoted to the discussion the relationships of connectedness between some types of graphs (resp. digraph) and Gm-closure spaces by using graph closure operators.
In this study, we present a new steganography method depend on quantizing the perceptual color spaces bands. Four perceptual color spaces are used to test the new method which is HSL, HSV, Lab and Luv, where different algorithms to calculate the last two-color spaces are used. The results reveal the validity of this method as a steganoic method and analysis for the effects of quantization and stegano process on the quality of the cover image and the quality of the perceptual color spaces bands are presented.
We define and study new ideas of fibrewise topological space namely fibrewise multi-topological space . We also submit the relevance of fibrewise closed and open topological space . Also fibrewise multi-locally sliceable and fibrewise multi-locally section able multi-topological space . Furthermore, we propose and prove a number of statements about these ideas. On the other hand, extend separation axioms of ordinary topology into fibrewise setting. The separation axioms are said to be fibrewise multi-T0. spaces, fibrewise multi-T1spaces, fibrewise multi-R0 spaces, fibrewise multi-Hausdorff spaces, fibrewise multi-functionally Hausdorff spaces, fibrewise multi-regular spaces, fibrewise multi-completely regular spaces, fibrewise multi-normal
... Show MoreIn this paper we introduce a new class of sets called -generalized b- closed (briefly gb closed) sets. We study some of its basic properties. This class of sets is strictly placed between the class of gp- closed sets and the class of gsp- closed sets. Further the notion of b- space is introduced and studied.
2000 Mathematics Subject Classification: 54A05
This paper presents the concepts of prepaths, paths, and cycles in α-topological spaces and studies them in orderable spaces. Also, many relationships are proved with their equivalences using some properties in topological spaces like compactness and locally connectedness.
In this paper, we give the concept of N-open set in bitopological spaces, where N is the first letter of the name of one of the authors, then we used this concept to define a new kind of compactness, namely N-compactness and we define the N-continuous function in bitopological spaces. We study some properties of N-compact spaces, and the relationships between this kind and two other known kinds which are S-compactness and pair-wise compactness.
In the present study, the cluster concept was adopted to find points parallel to the cumulative points of any subset in topology cluster proximity spaces. The takeoff set term was given by the researcher to the set of all points. Also, an opposite definition was found for it, which is the follower set. The relation between them was found and their most important properties were highlighted. Through these two sets, new sets were built that are called, f_σ-set ,f_tσ-set ,t_fσ-set ,bushy set, scant set .
The visual attraction of the fundamentals that require the availability in the design business, to achieve the needs of different social interactive and the need for recreation or entertainment as well as financial need and as such has considered the importance of a researcher studying the mechanics of visual attractions in the interior spaces have been identified according to the research problem the following question:
What are the mechanisms of visual attractions in the interior spaces and the current research aims to Recruitment mechanisms of visual attractions in the design of interior spaces as determined by three research limits are:
• Reduce the objective: the mechanics of visual attraction.
• Reducing the spatial: S
Soft closure spaces are a new structure that was introduced very recently. These new spaces are based on the notion of soft closure operators. This work aims to provide applications of soft closure operators. We introduce the concept of soft continuous mappings and soft closed (resp. open) mappings, support them with examples, and investigate some of their properties.
In this research, a new application has been developed for games by using the generalization of the separation axioms in topology, in particular regular, Sg-regular and SSg- regular spaces. The games under study consist of two players and the victory of the second player depends on the strategy and choice of the first player. Many regularity, Sg, SSg regularity theorems have been proven using this type of game, and many results and illustrative examples have been presented