In this paper, a modified three-step iteration algorithm for approximating a joint fixed point of non-expansive and contraction mapping is studied. Under appropriate conditions, several strong convergence theorems and Δ-convergence theorems are established in a complete CAT (0) space. a numerical example is introduced to show that this modified iteration algorithm is faster than other iteration algorithms. Finally, we prove that the modified iteration algorithm is stable. Therefore these results are extended and improved to a novel results that are stated by other researchers. Our results are also complement to many well-known theorems in the literature. This type of research can be played a vital role in computer programming
... Show MoreThe phenotypic characteristics in the interior spaces are seeing the result of the ability of the designer in his handling of the vocabulary and the elements to deliver a specific meaning for the recipient , and is working to stir up the receiver and make it effective in the process of perception of space. So the theme of the role of phenotypic characteristics is of great significance in the process of analyzing spaces to reach the goal of the main idea , and show those qualities through relationships design in terms of shape, color and texture ... etc. , to reach also designs more beautiful , and creating an internal environment , creative and continuous with its external environment , Hence the importance of research in that it tries t
... Show MoreSince his first existence on earth, human had formed a connecting link for a regressive, kinetic and developed relationship that comes from a semi-complicated interaction between natural environment and constructed environment, and this resulted in the survival of human and his existence continuance. Constructed environment enabled human to survive the natural environment inconstancies and enemies as predators, also it helped him to feel safe, comfortable and to practice his everyday life activities...etc. This alternative interaction resulted in creating a civilized legacy for a group of landmarks that tell about the development of this relationship by elemental output that reached us either by documents and manuscripts or as an existed
... Show MoreThe idea of ech fuzzy soft bi-closure space ( bicsp) is a new one, and its basic features are defined and studied in [1]. In this paper, separation axioms, namely pairwise, , pairwise semi-(respectively, pairwise pseudo and pairwise Uryshon) - fs bicsp's are introduced and studied in both ech fuzzy soft bi-closure space and their induced fuzzy soft bitopological spaces. It is shown that hereditary property is satisfied for , with respect to ech fuzzy soft bi-closure space but for other mentioned types of separations axioms, hereditary property satisfies for closed subspaces of ech fuzzy soft bi-closure space.
The concept of Cech fuzzy soft bi-closure space ( ˇ Cfs bi-csp) ( ˇ U, L1, L2, S) is initiated and studied by the authors in [6]. The notion of pairwise fuzzy soft separated sets in Cfs bi-csp is defined in this study, and various features of ˇ this notion are proved. Then, we introduce and investigate the concept of connectedness in both Cfs bi-csps and its ˇ associated fuzzy soft bitopological spaces utilizing the concept of pairwise fuzzy soft separated sets. Furthermore, the concept of pairwise feebly connected is introduced, and the relationship between pairwise connected and pairwise feebly connected is discussed. Finally, we provide various instances to further explain our findings.
This research discusses the subject of identity in the urban environment as it attempts to answer a number of questions that come with the concept of identity. The first of these questions: What is identity? Can a definition or conceptual framework be developed for identity? What about individual, collective, cultural, ethnic, political and regional identity? Is there a definition of identity in the urban environment in particular? If there is a definition of identity, what about social mobility responsible for social change? How can we see identity through this kinetics? Can we assume that identity in the urban environment has a variable structure or is of variable shape with a more stable structure? Can we determine the spatial-tempora
... Show MoreComes interest in the subject matter in the selection of the Family industry globally as one of the important industries which have developed a clear and significant in recent years, to look at these products and designs to their functional importance have appeared in recent years, the phenomenon of the small spaces because of housing Population density showed the need to find a spare Furniture fit these small spaces On this basis, determine the objective of this research is to arrive at a design techniques for dual-family employee for small spaces research sample included a double family manufactured in laboratories industry Furniture in Baghdad and local research sample includes family double Decker.Research focused on the first four c
... Show MoreWe define L-contraction mapping in the setting of D-metric spaces analogous to L-contraction mappings [1] in complete metric spaces. Also, give a definition for general D- matric spaces.And then prove the existence of fixed point for more general class of mappings in generalized D-metric spaces.
Our main interest in this study is to look for soft semi separations axioms in soft quad topological spaces. We talk over and focus our attention on soft semi separation axioms in soft quad topological spaces with respect to ordinary points and soft points. Moreover study the inherited characteristics at different angles with respect to ordinary points and soft points. Some of their central properties in soft quad topological spaces are also brought under examination.
The goal of this article is to construct fibrewise w-compact (resp. locally w-compact) spaces. Some related results and properties of these concepts will be investigated. Furthermore, we investigate various relationships between these concepts and three classes of fibrewise w-separation axioms.