Preferred Language
Articles
/
rhcEt40BVTCNdQwC3Bmn
Design and Fabrication of an Electromechanical Tester to Perform Two-dimensional Tensile Testing for Flexible Materials
...Show More Authors

There are many diseases that affect the arteries, especially those related to their elasticity and stiffness, and they can be guessed by estimating and calculating the modulus of elasticity. Hence, the accurate calculation of the elastic modulus leads to an accurate assessment of these diseases, especially in their early stages, which can contribute to the treatment of these diseases early. Most of the calculations used the one-dimensional (1D) modulus of elasticity. From a mechanical point of view, the stresses to which the artery is subjected are not one-dimensional, but three-dimensional. Therefore, estimating at least a two-dimensional (2D) modulus of elasticity will necessarily be more accurate. To the knowledge of researchers, there is a lack of published research on this subject, as well as a paucity of research that designed and implemented a 2D tensile testing device (2DTTD). However, there is no inspection of arterial flexibility and elasticity using the 2DTTD adequately studied before. Therefore, the aim of this work is to design and implement the 2DTTD to scrutinize if there is a difference between the 1D and 2D tensile examination. Different sized rectangular silicone specimens were manually fabricated; they were tested individually using the fabricated 2DTTD, which mainly comprises four actuators synchronously working with the same velocity and axial load force, two at each axis. As expected using the 2DTTD, the dimensions of the specimen remarkably influence the tensile testing results; the strain and stress rates and the modulus of elasticity were influenced. To validate the acquired 2D tensile testing results, the 1D tensile testing was performed using the same fabricated 2DTTD and compared to results gained using another tensile testing apparatus. During the verification process, the input data for models calibration were sufficiently and accurately provided. The results showed reasonable precision and reliability in calculations of the 2D stress and strain rates during the whole deformation process. Each mechanical device that has been used has the possibility to stretch and squeeze the sample and log the change in the specimen elongation. The authors thought that the present experimental methodology was applied to the linear mechanical device successfully, where the encoder that is attached to tested samples was in the principal direction. The present method is used to measure the deformation in a manner that differs from the traditional digital image correlation method, which required a toolset that is more expensive, where it incorporates high-accuracy optical equipment.

Preview PDF
Quick Preview PDF
Publication Date
Fri May 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
A review of ultra-high temperature materials for thermal protection system
...Show More Authors
Abstract<p>Ultra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process o</p> ... Show More
View Publication
Scopus (41)
Crossref (30)
Scopus Clarivate Crossref
Publication Date
Sat Jul 31 2021
Journal Name
Iraqi Journal Of Science
Stability Analysis and Assortment of Exact Traveling Wave Solutions for the (2+1)-Dimensional Boiti-Leon-Pempinelli System
...Show More Authors

     In this research, the Boiti–Leon–Pempinelli (BLP) system was used to understand the physical meaning of exact and solitary traveling wave solutions. To establish modern exact results, considered. In addition, the results obtained were compared with those obtained by using other existing methods, such as the standard hyperbolic tanh function method, and the stability analysis for the results was discussed.

View Publication Preview PDF
Scopus (5)
Scopus Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
Response of Two Rosa sp. to Light Quality in Vitro.
...Show More Authors

     In this study, dark and various light qualities (white, red, green, and blue) were applied to evaluate their effects on growth characteristics, chemical content, and callus characteristics of Rosa damascene Mill. and Rosa hybirda L.

   Explant (single-node and shoot tips) cultured on MS media supplemented with sucrose, agar, and plant growth regulators ( Kin 0.5 mg/l and IBA 1 mg/l for whole plant formation experiment or 1 mg/l kin with 0.5 mg/l IBA for callus experiment), incubated in a growth chamber.

   The results of the whole plant formation experiment showed variation in growth characteristics in two types of Rosa, Green and white light caused the height ratio of shoot growth compared wi

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Tue Jun 15 2021
Journal Name
Al-academy
The Relations Of Design And The Role Of It Making The Idea For Fashion Design: فرات جمال العتابي
...Show More Authors

Any design subject to a set of forces contributing to the establishment of relations working to strengthen the internal elements of the design; any imbalance in these elements can make a fragmented and weak design, thus preventing it from achieving the goal or performance. Poor performance can be attributed to various factors: the extent and function of the elements and principles in the design, realization of the idea, especially in fashion design.
Moreover, there are many aspects of a design that go into achieving the realization of the designer’s idea. The design utilizes a lot of stimulants by drawing attention to its design, which is consistent with the need for psychological and material individuals. In this research, we will

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 13 2021
Journal Name
Iraqi Journal Of Science
Bio-charge Elastic Characterization for A Qualitative Perspective of Innovative Bio-Composite Materials
...Show More Authors

In order to save natural resources, recycling necessarily becomes a top priority for all of us, to save exhaustible resources, produce green energy and preserve the environment.
In this perspective, we are trying to valorize a waste of animal origin, largely neglected by the actors of materials, through an industrial transformation into a biological charge to make new sustainable bio-composite materials.
Using a tensile test bench, we try to mechanically characterize this biomaterial of renewable resources that, unlike eco-composites, has been neglected by the material actors.
Obtained from waste, with a high recycling potential and from renewable resources, the bio-charge to be analyzed will be injected, later in different poly

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Jul 15 2023
Journal Name
2023 6th International Conference On Engineering Technology And Its Applications (iiceta)
Methodology for the Design and Programming Methods for a Smart Home
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Tue Jan 14 2025
Journal Name
Journal Of Engineering
Testing and Commissioning of a Low-Speed Wind Tunnel (LSWT) Test Section
...Show More Authors

The calibration of a low-speed wind tunnel (LSWT) test section had been made in the present work. The tunnel was designed and constructed at the Aerodynamics Lab. in the Mechanical Engineering Department/University of Baghdad. The test section design speed is 70 m/s. Frictional loses and uniformity of the flow inside the test section had been tested and calibrated based on the British standards for flow inside ducts and conduits. Pitot-static tube, boundary layer Pitot tube were the main instruments which were used in the present work to measure the flow characteristics with emphasize on the velocity uniformity and boundary layer growth along the walls of the test section. It is found that the maximum calibrated velocity for empty test sect

... Show More
View Publication
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Testing and Commissioning of a Low-Speed Wind Tunnel (LSWT) Test Section
...Show More Authors

The calibration of a low-speed wind tunnel (LSWT) test section had been made in the present work. The tunnel was designed and constructed at the Aerodynamics Lab. in the Mechanical Engineering Department/University of Baghdad. The test section design speed is 70 m/s. Frictional loses and uniformity of the flow inside the test section had been tested and calibrated based on the British standards for flow inside ducts and conduits. Pitot-static tube, boundary layer Pitot tube were the main instruments which were used in the present work to measure the flow characteristics with emphasize on the velocity uniformity and boundary layer growth along the walls of the test section. It is found that the maximum calibrated velocity for empty test s

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Design and Implementation of a Telemetry System for Environmental Applications
...Show More Authors

The Environmental Data Acquisition Telemetry System is a versatile, flexible and economical means to accumulate data from multiple sensors at remote locations over an extended period of time; the data is normally transferred to the final destination and saved for further analysis.

This paper introduces the design and implementation of a simplified, economical and practical telemetry system to collect and transfer the environmental parameters (humidity, temperature, pressure etc.) from a remote location (Rural Area) to the processing and displaying unit.

To get a flexible and practical system, three data transfer methods (three systems) were proposed (including the design and implementation) for rural area services, the fi

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 13 2019
Journal Name
Iraqi Journal Of Physics
Design and manufacturing of supercritical drying autoclave for aerogel production
...Show More Authors

This article will address autoclave design considerations and
manufacturing working with high pressure low temperature
supercritical drying technique to produce silica aerogel. The design
elects carbon dioxide as a supercritical fluid (31.7 oC and 72.3 bar).
Both temperature and pressure have independently controlling
facility through present design. The autoclave was light weight (4.5
kg) and factory-made from stainless steel. It contains a high pressure
window for monitoring both transfer carbon dioxide gas to liquid
carbon dioxide and watching supercritical drying via aerogel
preparation process. In this work aerogel samples were prepared and
the true apparent densities, total pore volume and pore size

... Show More
View Publication Preview PDF
Crossref (1)
Crossref