There are many diseases that affect the arteries, especially those related to their elasticity and stiffness, and they can be guessed by estimating and calculating the modulus of elasticity. Hence, the accurate calculation of the elastic modulus leads to an accurate assessment of these diseases, especially in their early stages, which can contribute to the treatment of these diseases early. Most of the calculations used the one-dimensional (1D) modulus of elasticity. From a mechanical point of view, the stresses to which the artery is subjected are not one-dimensional, but three-dimensional. Therefore, estimating at least a two-dimensional (2D) modulus of elasticity will necessarily be more accurate. To the knowledge of researchers, there is a lack of published research on this subject, as well as a paucity of research that designed and implemented a 2D tensile testing device (2DTTD). However, there is no inspection of arterial flexibility and elasticity using the 2DTTD adequately studied before. Therefore, the aim of this work is to design and implement the 2DTTD to scrutinize if there is a difference between the 1D and 2D tensile examination. Different sized rectangular silicone specimens were manually fabricated; they were tested individually using the fabricated 2DTTD, which mainly comprises four actuators synchronously working with the same velocity and axial load force, two at each axis. As expected using the 2DTTD, the dimensions of the specimen remarkably influence the tensile testing results; the strain and stress rates and the modulus of elasticity were influenced. To validate the acquired 2D tensile testing results, the 1D tensile testing was performed using the same fabricated 2DTTD and compared to results gained using another tensile testing apparatus. During the verification process, the input data for models calibration were sufficiently and accurately provided. The results showed reasonable precision and reliability in calculations of the 2D stress and strain rates during the whole deformation process. Each mechanical device that has been used has the possibility to stretch and squeeze the sample and log the change in the specimen elongation. The authors thought that the present experimental methodology was applied to the linear mechanical device successfully, where the encoder that is attached to tested samples was in the principal direction. The present method is used to measure the deformation in a manner that differs from the traditional digital image correlation method, which required a toolset that is more expensive, where it incorporates high-accuracy optical equipment.
Any design subject to a set of forces contributing to the establishment of relations working to strengthen the internal elements of the design; any imbalance in these elements can make a fragmented and weak design, thus preventing it from achieving the goal or performance. Poor performance can be attributed to various factors: the extent and function of the elements and principles in the design, realization of the idea, especially in fashion design.
Moreover, there are many aspects of a design that go into achieving the realization of the designer’s idea. The design utilizes a lot of stimulants by drawing attention to its design, which is consistent with the need for psychological and material individuals. In this research, we will
The teacher is the most able to achieve the goals of education in education because he has the ability to affect the behavior of the disciples testified and its actions and appearance and other actions that convey pupils with it sometimes in a manner unconscious or unconscious , and the importance of the role of the teacher in the educational process , it is necessary to compromise the care and attention to the extent that commensurate with the important role that the rise in the preparation of youth and composition , and as a result is needed to continue efforts to improve the quality of teacher preparation so that it can be more effective and positive in the educational process .
First - Research Goals -<
This article will address autoclave design considerations and
manufacturing working with high pressure low temperature
supercritical drying technique to produce silica aerogel. The design
elects carbon dioxide as a supercritical fluid (31.7 oC and 72.3 bar).
Both temperature and pressure have independently controlling
facility through present design. The autoclave was light weight (4.5
kg) and factory-made from stainless steel. It contains a high pressure
window for monitoring both transfer carbon dioxide gas to liquid
carbon dioxide and watching supercritical drying via aerogel
preparation process. In this work aerogel samples were prepared and
the true apparent densities, total pore volume and pore size
The Environmental Data Acquisition Telemetry System is a versatile, flexible and economical means to accumulate data from multiple sensors at remote locations over an extended period of time; the data is normally transferred to the final destination and saved for further analysis.
This paper introduces the design and implementation of a simplified, economical and practical telemetry system to collect and transfer the environmental parameters (humidity, temperature, pressure etc.) from a remote location (Rural Area) to the processing and displaying unit.
To get a flexible and practical system, three data transfer methods (three systems) were proposed (including the design and implementation) for rural area services, the fi
... Show MoreSCADA is the technology that allows the operator to gather data from one or more various facilities and to send control instructions to those facilities. This paper represents an adaptable and low cost SCADA system for a particular sugar manufacturing process, by using Programmable Logic Controls (Siemens s7-1200, 1214Dc/ Dc/ Rly). The system will control and monitor the laboratory production line chose from sugar industry. The project comprises of two sections the first one is the hardware section that has been designed, and built using components suitable for making it for laboratory purposes, and the second section was the software as the PLC programming, designing the HMI, creating alarms and trending system. The system will ha
... Show MoreGraphene oxide (GO) was prepared from graphite (GT) with Hammer method, the GO was reduced with hydrazine hydrate to produce a reduced graphene oxide (RGO). The RGO was reacted with thiocarbohydrazide (TCH) to functionalize the RGO with 4-amino-3-symbol-1h-1, 2, 4-triazol-5 (4H) –thion group and to obtain (RGOT). All the prepared nanomaterial and the product of the functionalization RGOT were characterized with Fourier transformer infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) analysis. RGOT mixed with ultrasonic device at different pH values of phosphate buffer solution (PBS), the mixture used to modifying a screen printed carbon electrodes SPCE and with cyclic voltammetry the sensitivity of selectivity of the new modifying elect
... Show MoreIncremental sheet forming (ISF) is a metal forming technology in which small incremental deformations determine the final shape. The sheet is deformed by a hemispherical tool that follows the required shape contour to deform the sheet into the desired geometry. In this study, single point incremental sheet forming (SPIF) has been implemented in dentistry to manufacture a denture plate using two types of stainless steel, 304 and 316L, with an initial thickness of 0.5mm and 0.8mm, respectively. Stainless steel was selected due to its biocompatibility and reasonable cost. A three-dimensional (3D) analysis procedure was conducted to evaluate the manufactured part's geometrical accuracy and thickness distribution. The obtained results confirm
... Show More